Energetics of Multi-shell Cages

  • Attila Bende
  • Mircea V. Diudea
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 6)


Fullerene aggregation can follow a well-defined geometry of which energy trends to a minimal value. The pattern of space filling differs function of the dimensions and shapes of composing small fullerenes. An attempt of building and stability evaluation of several fullerene aggregates was made. The results show these aggregates as multi-shell covalently bonded structures with a stability comparable to that of C60, the reference fullerene in nanoscience. The calculations were made at the DFTB+ level of theory.


Classical Fullerene Isolate Pentagon Rule Fullerene Soot Periodic Minimal Surface Radial Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111(26):5678–5684CrossRefGoogle Scholar
  2. Böttcher A, Weis P, Bihlmeier A, Kappes MM (2004) C58 on HOPG: soft-landing adsorption and thermal desorption. Phys Chem Chem Phys 6:5213–5217CrossRefGoogle Scholar
  3. Böttcher A, Weis P, Jester SS, Bihlmeier A, Kloppe W, Kappes MM (2005) Solid C58 films. Phys Chem Chem Phys 7:2816–2820CrossRefGoogle Scholar
  4. Ceulemans A, King RB, Bovin SA, Rogers KM, Troisi A, Fowler PW (1999) The heptakisoctahedral group and its relevance to carbon allotropes with negative curvature. J Math Chem 26:101–123CrossRefGoogle Scholar
  5. Dandoloff R, Döhler G, Bilz H (1980) Bond charge model of amorphous tetrahedrally coordinated solids. J Non-Cryst Solids 35–36:537–542CrossRefGoogle Scholar
  6. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  7. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  8. Elstner M, Jalkanen K, Knapp-Mohammady M, Frauenheim T, Suhai S (2000) DFT studies on helix formation in N-acetyl-(L-alanyl)n-N-methylamide for n = 1–20. Chem Phys 256:15–27CrossRefGoogle Scholar
  9. Elstner M, Jalkanen KJ, Knapp-Mohammady M, Frauenheim T, Suhai S (2001a) Energetics and structure of glycine and alanine based model peptides: approximate SCC-DFTB, AM1 and PM3 methods in comparison with DFT, HF and MP2 calculations. Chem Phys 263:203–219CrossRefGoogle Scholar
  10. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001b) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155CrossRefGoogle Scholar
  11. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Oxford University Press, OxfordGoogle Scholar
  12. Gao X, Zhao Y (2007) The way of stabilizing non-IPR fullerenes and structural elucidation of C(54)Cl(8). J Comput Chem 28:795–801CrossRefGoogle Scholar
  13. Hennrich FH, Michel RH, Fischer A, Richard-Schneider S, Gilb S, Kappes MM, Fuchs D, Bürk M, Kobayashi K, Nagase S (1996) Isolation and characterization of C80. Angew Chem 35:1732–1734CrossRefGoogle Scholar
  14. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) A preparative scale synthesis of C36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O. J Am Chem Soc 122:398–399CrossRefGoogle Scholar
  15. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358CrossRefGoogle Scholar
  16. Kroto HW (1987) The stability of the fullerenes Cn (n = 24, 28, 32, 50, 60 and 70). Nature 329:529–531CrossRefGoogle Scholar
  17. Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335CrossRefGoogle Scholar
  18. Löffler D, Jester SS, Weis P, Böttcher A, Kappes MM (2006) Cn films (n = 50, 52, 54, 56, and 58) on graphite: cage size dependent electronic properties. J Chem Phys 124:054705-3CrossRefGoogle Scholar
  19. Löffler D, Bajales N, Cudaj M, Weis P, Lebedkin S, Bihlmeier A, Tew DP, Klopper W, Böttcher A, Kappes MM (2009) Non-IPR C60 solids. J Chem Phys 130:164705CrossRefGoogle Scholar
  20. Löffler D, Ulas S, Jester S-S, Weis P, Bottcher A, Kappes MM (2010) Properties of non-IPR fullerene films versus size of the building blocks. Phys Chem Chem Phys 12:10671–10684CrossRefGoogle Scholar
  21. Lu X, Chen Z, Thiel W, Schleyer PR, Huang R, Zheng L (2004) Properties of fullerenes[50] and D5h decachlorofullerene[50]: a computational study. J Am Chem Soc 126:14871–14878CrossRefGoogle Scholar
  22. Mackay AL, Terrones H (1991) Diamond from graphite. Nature 352:762–762CrossRefGoogle Scholar
  23. Mackay AL, Terrones H (1993) Hypothetical graphite structures with negative Gaussian curvature. Philos Trans R Soc A 343:113–127CrossRefGoogle Scholar
  24. Müller A, Roy S (2003) En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord Chem Rev 245:153–166CrossRefGoogle Scholar
  25. Nagy CL, Diudea MV (2009) NANO-studio software. Babes-Bolyai University, ClujGoogle Scholar
  26. O’Keeffe M, Adams GB, Sankey OF (1992) Predicted new low energy forms of carbon. Phys Rev Lett 68:2325–2328CrossRefGoogle Scholar
  27. Piskoti C, Yarger J, Zettl A (1998) C36, a new carbon solid. Nature 393:771–773CrossRefGoogle Scholar
  28. Ricardo-Chavez JL, Dorantes-Dávila J, Terrones M, Terrones H (1997) Electronic properties of fullerenes with nonpositive Gaussian curvature: finite zeolites. Phys Rev B 56:12143–12146CrossRefGoogle Scholar
  29. Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials. Nano Lett 7:570–576CrossRefGoogle Scholar
  30. Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer. Zürich (Reprinted in: Schläfli L 1814–1895 (1950) Gesammelte Mathematische Abhandlungen, Band 1:167–387, Verlag Birkhäuser, Basel)Google Scholar
  31. Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASA Technical note D-5541Google Scholar
  32. Schwarz HA (1865) Über minimalflächen. Monatsber Berlin Akad, BerlinGoogle Scholar
  33. Schwarz HA (1890) Gesammelte Matematische Abhandlungen. Springer, BerlinCrossRefGoogle Scholar
  34. Scott LT, Hashemi MM, Meyer DT, Warren HB (1991) Corannulene. A convenient new synthesis. J Am Chem Soc 113:7082–7084CrossRefGoogle Scholar
  35. Shevchenko VY (2011) Search in chemistry, biology and physics of the nanostate. Lema, St PetersburgGoogle Scholar
  36. Stefu M, Diudea MV (2005) CageVersatile_CVNET. Babes-Bolyai University, ClujGoogle Scholar
  37. Tan YZ, Xie SY, Huang RB, Zheng L (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460CrossRefGoogle Scholar
  38. Taylor R (1992) Rationalization of the most stable isomer of a fullerene Cn. Perkin Trans 2 J Chem Soc 3–40Google Scholar
  39. Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Molecular junctions by joining single–walled carbon nanotubes. Phys Rev Lett 89(1–4):075505CrossRefGoogle Scholar
  40. Terrones H, Mackay AL (1997) From C60 to negatively curved graphite. Prog Cryst Growth Character 34:25–36CrossRefGoogle Scholar
  41. Terrones H, Terrones M (1997) Quasiperiodic icosahedral graphite sheets and high-genus fullerenes with nonpositive Gaussian curvature. Phys Rev B 55:9969–9974CrossRefGoogle Scholar
  42. Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:1261–12637CrossRefGoogle Scholar
  43. Townsend SJ, Lenosky TJ, Muller DA, Nichols CS, Elser V (1992) Negatively curved graphite sheet model of amorphous carbon. Phys Rev Lett 69:921–924CrossRefGoogle Scholar
  44. Troshin PA, Avent AV, Darwisch AD, Martsinovich N, Abdul-Sada AK, Street JM, Taylor R (2005) Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18. Science 309:278–281CrossRefGoogle Scholar
  45. Vanderbilt D, Tersoff J (1992) Negative-curvature fullerene analog of C60. Phys Rev Lett 68:511–513CrossRefGoogle Scholar
  46. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E (2000) C66, fullerene encaging a scandium dimmer. Nature 408:426–427CrossRefGoogle Scholar
  47. Wang CR, Shi ZQ, Wan LJ, Lu X, Dunsch L, Shu CY, Tang YL, Shinohara H (2006) C64H4: production, isolation and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610CrossRefGoogle Scholar
  48. Xie SY, Gao F, Lu X, Huang RB, Wang CR, Zhang X, Liu ML, Deng SL, Zheng SL (2004) Capturing the labile fullerene[50] as C50Cl10. Science 304:699–699CrossRefGoogle Scholar
  49. Yan QB, Zheng QR, Su G (2007) Theoretical study on the structures, properties and spectroscopies of fullerene derivatives C66X4 (X = H, F, Cl). Carbon 45:1821–1827CrossRefGoogle Scholar
  50. Zeger L, Kaxiras E (1993) New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys Rev Lett 70:2920–2923CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Molecular and Biomolecular Physics DepartmentNational Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityClujRomania

Personalised recommendations