Advertisement

Diamond D5

  • Csaba L. Nagy
  • Mircea V. Diudea
Chapter
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 6)

Abstract

Carbon allotropes, built up as hyper-structures of the classical diamond and having a high percentage of sp3 carbon atoms and pentagons, are generically called diamond D5. Four allotropes are discussed in this chapter: a spongy net; a dense hyper-diamond D5, with an “anti”-diamantane structure; the corresponding hyper-lonsdaleite; and a quasi-diamond which is a fivefold symmetry quasicrystal with “sin”-diamantane structure. Substructures of these allotropes are presented as possible intermediates in a lab synthesis, and their energetics evaluated at Hartree-Fock, DFT, and DFTB levels of theory. A topological description of these networks is also given.

Keywords

Topological Description Carbon Allotrope Point Symbol Fivefold Symmetry Diamantane Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

CL Nagy acknowledges the financial support of the Sectorial Operational Programme for Human Resources Development 2007–2013, cofinanced by the European Social Fund, under the project number POSDRU 89/1.5/S/60189 with the title “Postdoctoral Programs for Sustainable Development in a Knowledge Based Society.”

References

  1. Adams GB, O’Keeffe M, Demkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49(12):8048–8053CrossRefGoogle Scholar
  2. Aleksenski AE, Baidakova MV, Vul’ AY, Davydov VY, Pevtsova YA (1997) Diamond-graphite phase transition in ultradisperse-diamond clusters. Phys Solid State 39:1007–1015CrossRefGoogle Scholar
  3. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefGoogle Scholar
  4. Barborini E, Piseri P, Milani P, Benedek G, Ducati C, Robertson J (2002) Negatively curved spongy carbon. Appl Phys Lett 81:3359–3361CrossRefGoogle Scholar
  5. Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. Mater Sci Forum 232:247–274CrossRefGoogle Scholar
  6. Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) The structure of negatively curved spongy carbon. Diam Relat Mater 12:768–773CrossRefGoogle Scholar
  7. Blatov VA, Carlucci L, Ciani G, Proserpio DM (2004) Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database. CrystEngComm 6:377–395CrossRefGoogle Scholar
  8. Blatov VA, Delgado-Friedrichs O, O’Keeffe M, Proserpio DM (2007) Three-periodic nets and tilings: natural tilings for nets. Acta Crystallogr Sect A Found Crystallogr 63(5):418–425CrossRefGoogle Scholar
  9. Blatov VA, O’Keeffe M, Proserpio DM (2009) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm 12(1):44–48CrossRefGoogle Scholar
  10. Böhme B, Guloy A, Tang Z, Schnelle W, Burkhardt U, Baitinger M, Grin Y (2007) Oxidation of M4Si4 (M = Na, K) to clathrates by HCl or H2O. J Am Chem Soc 129:5348–5349CrossRefGoogle Scholar
  11. Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer PVR (2004) Theoretical studies on the smallest fullerene: from monomer to oligomers and solid states. Chem Eur J 10(4):963–970CrossRefGoogle Scholar
  12. DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822CrossRefGoogle Scholar
  13. Delgado-Friedrichs O, O’Keeffe M (2005) Crystal nets as graphs: terminology and definitions. J Solid State Chem 178(8):2480–2485CrossRefGoogle Scholar
  14. Diudea MV (ed) (2005a) Nanostructures, novel architecture. NOVA Scientific Publishers, New YorkGoogle Scholar
  15. Diudea MV (2005b) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009CrossRefGoogle Scholar
  16. Diudea MV (2010a) Diamond D5, a novel allotrope of carbon. Studia Univ Babes Bolyai Chemia 55(4):11–17Google Scholar
  17. Diudea MV (2010b) Nanomolecules and nanostructures-polynomials and indices, MCM, No. 10. University of Kragujevac, SerbiaGoogle Scholar
  18. Diudea MV, Ilić A (2011) All-pentagonal face multi tori. J Comput Theor Nanosci 8:736–739CrossRefGoogle Scholar
  19. Diudea MV, Katona G (1999) Molecular topology of dendrimers. In: Newkome GA (ed) Adv Dendritic Macromol 4(1999):135–201Google Scholar
  20. Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, DordrechtCrossRefGoogle Scholar
  21. Diudea MV, Nagy CL (2012) C20-related structures: diamond D5. Diam Relat Mater 23:105–108CrossRefGoogle Scholar
  22. Diudea MV, Ştefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  23. Diudea MV, Nagy CL, Ilic A (2011) Diamond D5, a novel class of carbon allotropes. In: Putz MV (ed) Carbon bonding and structures. Carbon materials: chemistry and physics, vol 5. Springer, Dordrecht, pp 273–289CrossRefGoogle Scholar
  24. Diudea MV, Nagy CL, Bende A (2012) On diamond D5. Struct Chem 23:981–986CrossRefGoogle Scholar
  25. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  26. Fowler PW, Heine T (2001) Stabilisation of pentagon adjacencies in the lower fullerenes by functionalization. J Chem Soc Perkin Trans 2:487–490Google Scholar
  27. Gaussian 09 Rev. A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, WallingfordGoogle Scholar
  28. Guloy A, Ramlau R, Tang Z, Schnelle W, Baitinger M, Grin Y (2006) A quest-free germanium clathrate. Nature 443:320–323CrossRefGoogle Scholar
  29. Haag R, Schröder D, Zywietz T, Jiao H, Schwarz H, Von Schleyer PR, de Meijere AT (1996) The long elusive acepentalene – experimental and theoretical evidence for its existence. Angew Chem 35:1317–1319CrossRefGoogle Scholar
  30. Haag R, Schüngel F-M, Ohlhorst B, Lendvai T, Butenschön H, Clark T, Noltemeyer M, Haumann T, Boese R, de Meijere A (1998) Syntheses, structures, and reactions of highly strained dihydro- and tetrahydroacepentalene derivatives. Chem Eur J 4:1192–1200CrossRefGoogle Scholar
  31. Haddon RC (1987) Rehybridization and π-orbital overlap in nonplanar conjugated organic molecules: π-orbital axis vector (POAV) analysis and three-dimensional hückel molecular orbital (3D-HMO) theory. J Am Chem Soc 109:1676–1685CrossRefGoogle Scholar
  32. Haddon RC (1990) Measure of nonplanarity in conjugated organic molecules: which structurally characterized molecule displays the highest degree of pyramidalization? J Am Chem Soc 112:3385–3389CrossRefGoogle Scholar
  33. Han X, Zhou S-J, Tan Y-Z, Wu X, Gao F, Liao Z-J, Huang R-B, Feng Y-Q, Lu X, Xie S-Y, Zheng L-S (2008) Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of double- and triple-pentagon-fused chlorofullerenes. Angew Chem Int Ed 47:5340–5343CrossRefGoogle Scholar
  34. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AYA, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730CrossRefGoogle Scholar
  35. Kuck D (2006) Functionalized aromatics aligned with the three Cartesian axes: extension of centropolyindane chemistry. Pure Appl Chem 78:749–775CrossRefGoogle Scholar
  36. Kyani A, Diudea MV (2012) Molecular dynamics simulation study on the diamond D5 substructures. Central Eur J Chem 10(4):1028–1033CrossRefGoogle Scholar
  37. Meier WM, Olson DH (1992) Atlas of zeolite structure types, 3rd edn. Butterworth-Heinemann, LondonGoogle Scholar
  38. Nagy CL, Diudea MV (2005) JSChem. Babes–Bolyai University, ClujGoogle Scholar
  39. Nagy CL, Diudea MV (2009) NANO-Studio software. Babes-Bolyai University, ClujGoogle Scholar
  40. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004CrossRefGoogle Scholar
  41. Pan BF, Cui DX, Xu P, Huang T, Li Q, He R, Gao F (2007) Cellular uptake enhancement of polyamidoamine dendrimer modified single walled carbon nanotubes. J Biomed Pharm Eng 1:13–16Google Scholar
  42. Paquette LA, Balogh DW (1982) An expedient synthesis of 1,16-dimethyldodecahedrane. J Am Chem Soc 104:774–783CrossRefGoogle Scholar
  43. Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization. Synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294CrossRefGoogle Scholar
  44. Prinzbach H, Wahl F, Weiler A, Landenberger P, Wörth J, Scott LT, Gelmont M, Olevano D, Sommer F, Issendoef B (2006) C20 carbon clusters: fullerene-boat-sheet generation, mass selection, photoelectron characterization. Chem Eur J 12:6268–6280CrossRefGoogle Scholar
  45. Schwarz U, Wosylus A, Böhme B, Baitinger M, Hanfland M, Grin Y (2008) A 3D network of four-bonded germanium: a link between open and dense. Angew Chem Int Ed 47:6790–6793CrossRefGoogle Scholar
  46. Szefler B, Diudea MV (2012) On molecular dynamics of the diamond D5 seed. Struct Chem 23(3):717–722CrossRefGoogle Scholar
  47. Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714CrossRefGoogle Scholar
  48. Tomalia DA (1993) Starburst™/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichim Acta 26:91–101Google Scholar
  49. Wahl F, Weiler A, Landenberger P, Sackers E, Voss T, Haas A, Lieb M, Hunkler D, Worth J, Knothe L, Prinzbach H (2006) Towards perfunctionalized dodecahedranes – en route to C20 fullerene. Chem Eur J 12:6255–6267CrossRefGoogle Scholar
  50. Zywietz TK, Jiao H, Schleyer PR, de Meijere A (1998) Aromaticity and antiaromaticity in oligocyclic annelated five-membered ring systems. J Org Chem 63:3417–3422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityClujRomania

Personalised recommendations