Crystallographic Structure Refinement in a Nutshell

Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The objective of these notes is to provide a general overview of modern crystallographic structure refinement. No specific or technical details are presented, but concepts only. However, references are provided to the relevant literature for those who desire to learn more.

Keywords

Crystallographic structure refinement TLS ADP Twinning Maximum-likelihood Real-space 

References

  1. 1.
    Adams PD, Pannu NS, Read RJ, Brünger AT (1997) Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci 94:5018–5023CrossRefGoogle Scholar
  2. 2.
    Afonine PV, Urzhumtsev A (2007) On determination of T matrix in TLS modelling. CCP4 newsletter on protein crystallogrophy 45. Contribution 6Google Scholar
  3. 3.
    Afonine PV, Grosse-Kunstleve RW, Adams PD (2005) A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr D 61:850–855CrossRefGoogle Scholar
  4. 4.
    Afonine PV, Grosse-Kunstleve RW, Urzhumtsev A, Adams PD (2009) Automatic multiple-zone rigid-body refinement with a large convergence radius. J Appl Crystallogr 42:607–615CrossRefGoogle Scholar
  5. 5.
    Afonine PV, Urzhumtsev A, Grosse-Kunstleve RW, Adams PD (2010) Atomic Displacement Parameters (ADPs), their parameterization and refinement in PHENIX. Computational crystallography newsletter. 1: 24–31. (http://www.phenix-online.org/newsletter)
  6. 6.
    Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D 68:352–367CrossRefGoogle Scholar
  7. 7.
    Agarwal RC (1978) A new least-squares refinement technique based on the fast Fourier transform algorithm. Acta Crystallogr A 34:791–809CrossRefGoogle Scholar
  8. 8.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  9. 9.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542CrossRefGoogle Scholar
  10. 10.
    Bricogne G, Irwin J (1996) Maximum-likelihood structure refinement: theory and implementation within BUSTER-TNT. Proceedings of the CCPD Study Weekend, Daresbury Laboratory, Warrington, England, pp 85–92Google Scholar
  11. 11.
    Brünger AT (2007) Version 1.2 of the Crystallography and NMR system. Nat Protoc 2: 2728–2733CrossRefGoogle Scholar
  12. 12.
    Brünger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Acc Chem Res 35:404–412CrossRefGoogle Scholar
  13. 13.
    Brünger AT, Kuriyan J, Karplus M (1987) Crystallographic R factor refinement by molecular dynamics. Science 235:458–460CrossRefGoogle Scholar
  14. 14.
    Brünger AT, Adams PD, Rice LM (2001) Enhanced macromolecular refinement by simulated annealing. International tables for crystallography, vol F. Crystallography of biological macromolecules. Kluwer Academic Publishers, Dordrecht, pp 375–381Google Scholar
  15. 15.
    Chapman MS (1995) Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Crystallogr A 51:69–80CrossRefGoogle Scholar
  16. 16.
    Cheetham JC, Artymiuk PJ, Phillips DC (1992) Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. J Mol Biol 224:613–628CrossRefGoogle Scholar
  17. 17.
    Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21CrossRefGoogle Scholar
  18. 18.
    Deisenhofer J, Remington SJ, Steigemann W (1985) Experience with various techniques for the refinement of protein structures. Methods Enzymol 115B:303–323CrossRefGoogle Scholar
  19. 19.
    Diamond R (1971) A real-space refinement procedure for proteins. Acta Crystallogr A 27:436–452CrossRefGoogle Scholar
  20. 20.
    Dunitz JD, White DNJ (1973) Non-rigid-body thermal-motion analysis. Acta Crystallogr A 29:93CrossRefGoogle Scholar
  21. 21.
    Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr A 47:392–400CrossRefGoogle Scholar
  22. 22.
    Fokine A, Urzhumtsev A (2002) Flat bulk-solvent model: obtaining optimal parameters. Acta Crystallogr D 58:1387–1392CrossRefGoogle Scholar
  23. 23.
    French S, Wilson K (1978) On the treatment of negative intensity observations. Acta Crystallogr A 34:517–525CrossRefGoogle Scholar
  24. 24.
    Grosse-Kunstleve RW, Afonine PV, Adams PD (2004) cctbx news. Newsletter of the IUCr commission on crystallographic computing 4: 19–36Google Scholar
  25. 25.
    Grosse-Kunstleve RW, Moriarty NW, Adams PD (2009) Torsion angle refinement and dynamics as a tool to aid crystallographic structure refinement. Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, Aug 30–Sept 2, 2009, San Diego, California, USAGoogle Scholar
  26. 26.
    Headd JJ, Immormino RM, Keedy DA, Emsley P, Richardson DC, Richardson JS (2009) Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place. J Struct Funct Genomics 10(1):83–93CrossRefGoogle Scholar
  27. 27.
    Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, Richardson DC, Richardson JS, Adams PD (2012) Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr D 68:381–390CrossRefGoogle Scholar
  28. 28.
    Helliwell JR (2008) Macromolecular crystal twinning, lattice disorders and multiple crystals. Crystallogr Rev 14:189–250CrossRefGoogle Scholar
  29. 29.
    Johnson CK, Levy HA (1974) Thermal motion analysis using Bragg diffraction data. International tables for X-ray crystallography, vol IV, ed. Ibers JA, Hamilton WC, pp 311–335. Birmingham: The Kynoch PressGoogle Scholar
  30. 30.
    Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119CrossRefGoogle Scholar
  31. 31.
    Korostelev A, Bertram R, Chapman MS (2002) Simulated-annealing real-space refinement as a tool in model building. Acta Crystallogr D 58:761–767CrossRefGoogle Scholar
  32. 32.
    Lunin VY, Skovoroda TP (1995) R-free likelihood-based estimates of errors for phases calculated from atomic models. Acta Crystallogr A 51:880–887CrossRefGoogle Scholar
  33. 33.
    Lunin VY, Urzhumtsev A (1984) Improvement of protein phases by coarse model modification. Acta Crystallogr A 40:269–277CrossRefGoogle Scholar
  34. 34.
    Lunin VY, Urzhumtsev A (1985) Program construction for macromolecule atomic model refinement based on the fast Fourier transform and fast differentiation algorithms. Acta Crystallogr A 41:327–333CrossRefGoogle Scholar
  35. 35.
    Lunin VY, Urzhumtsev AG (1999) Maximal Likelihood refinement. It works, but why?. CCP4 newsletter on protein crystallography 37:14–28Google Scholar
  36. 36.
    Lunin VY, Urzhumtsev A (1989) FROG – high-speed restraint-constraint refinement program for macromolecular structure. J Appl Crystallogr 22:500–506CrossRefGoogle Scholar
  37. 37.
    McCoy AJ, Storoni LC, Read RJ (2004) Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr D 60:1220–1228CrossRefGoogle Scholar
  38. 38.
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr D 53:240–255CrossRefGoogle Scholar
  39. 39.
    Oldfield TJ (2001) A number of real-space torsion-angle refinement techniques for proteins, nucleic acids, ligands and solvent. Acta Crystallogr D 57:82–94CrossRefGoogle Scholar
  40. 40.
    Pannu NS, Read RJ (1996) Improved Structure Refinement Through Maximum Likelihood. Acta Crystallogr A 52:659–668CrossRefGoogle Scholar
  41. 41.
    Pannu NS, Murshudov GN, Dodson EJ, Read RJ (1998) Incorporation of Prior Phase Information Strengthens Maximum-Likelihood Structure Refinement. Acta Crystallogr D 54:1285–1294CrossRefGoogle Scholar
  42. 42.
    Parsons S (2003) Introduction to twinning. Acta Crystallogr D 59:1995–2003CrossRefGoogle Scholar
  43. 43.
    Prince E, Finger LW (1973) Use of Constraints on Thermal Motion in Structure Refinement of Molecules with Librating Side Groups. Acta Crystallogr B 29:179CrossRefGoogle Scholar
  44. 44.
    Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149CrossRefGoogle Scholar
  45. 45.
    Read RJ (1990) Structure-factor probabilities for related structures. Acta Crystallogr A 46:900–912CrossRefGoogle Scholar
  46. 46.
    Read RJ (1999) Detecting outliers in non-redundant diffraction data. Acta Crystallogr D 55:1759–1764CrossRefGoogle Scholar
  47. 47.
    Read RJ, Adams PD, Arendall WB III, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, Lütteke T, Otwinowski Z, Perrakis A, Richardson JS, Sheffler WH, Smith JL, Tickle IJ, Vriend G, Zwart PH (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412CrossRefGoogle Scholar
  48. 48.
    Rice LM, Brunger AT (1994) Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19:277–290CrossRefGoogle Scholar
  49. 49.
    Sheriff S, Hendrickson WA (1987) Description of overall anisotropy in diffraction from macromolecular crystals. Acta Crystallogr A 43:118–121CrossRefGoogle Scholar
  50. 50.
    Tronrud DE (1994) From First Map to Final Model. Proceedings of the CCP4 Study Weekend, edited by S. Bailey, R. Hubbard & D Waller, Warrington: Daresbury Laboratory, pp. 111–124Google Scholar
  51. 51.
    Tronrud DE (1997) TNT refinement package. Methods Enzymol 277:306–319CrossRefGoogle Scholar
  52. 52.
    Tronrud DE (2004) Introduction to macromolecular refinement. Acta Crystallogr D 60:2156–2168CrossRefGoogle Scholar
  53. 53.
    Urzhumtsev AG, Lunin VY, Vernoslova EA (1989) FROG – high-speed restraint-constraint refinement program for macromolecular structure. J Appl Crystallogr 22:500–506CrossRefGoogle Scholar
  54. 54.
    Urzhumtsev A, Afonine PV, Adams PD (2011) TLS for dummies. Computational crystallography newsletter 2: 42–84. (http://www.phenix-online.org/newsletter)
  55. 55.
    Watkin DJ (2008) Structure Refinement: Some Background Theory and Practical Strategies. Appl Crystallogr 41:491–522CrossRefGoogle Scholar
  56. 56.
    Winn MD, Isupov MN, Murshudov GN (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D 57:122–133CrossRefGoogle Scholar
  57. 57.
    Zwart PH, Grosse-Kunstleve RW, Adams PD (2005) Characterization of X-ray data sets. CCP4 newsletter, Winter, Contribution 7Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations