Model-Building and Reduction of Model Bias in Electron Density Maps

Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Model-building is a key element of interpretation of electron density maps. Once a model is built it can then be used to further improve the map and hence improve the quality of a new model. It is helpful in this process to have effective methods for automated model-building and for ensuring that the resulting maps are minimally biased by the model. Many powerful methods for automatic interpretation of macromolecular electron density maps have been developed recently. Here we describe one method based on the identification of regular secondary structure and extension with fragments from known structures. We then describe the use of density modification procedures (“prime-and-switch”) to reduce the model bias in maps calculated from models. Finally we describe how these prime-and-switch maps can be used as part of procedures to improve molecular replacement models just after initial placement and how this can extend the range of molecular replacement.

Keywords

Model-building Molecular replacement Morphing Prime-and-switch maps Model bias 

References

  1. 1.
    Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221CrossRefGoogle Scholar
  2. 2.
    Baker ML, Ju T, Chiu W (2007) Identification of secondary structure elements in intermediate-resolution density maps. Structure 15:7–19CrossRefGoogle Scholar
  3. 3.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Wiessig IN, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  4. 4.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542CrossRefGoogle Scholar
  5. 5.
    Bhat TN (1988) Calculation of an OMIT map. J Appl Crystallogr 21:279–281CrossRefGoogle Scholar
  6. 6.
    Cowtan K (2006) Buccaneer software for automated model building. Acta Crystallogr D 62:1002–1011CrossRefGoogle Scholar
  7. 7.
    DePristo MA, de Bakker PIW, Johnson RJK, Blundell TL (2005) Crystallographic refinement by knowledge-based exploration of complex energy landscapes. Structure 13:1311–1319CrossRefGoogle Scholar
  8. 8.
    DiMaio F, Kondrashov DA, Bitto E, Soni A, Bingman CA, Phillips GN Jr, Shavlik JW (2007) Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23:2851–2858CrossRefGoogle Scholar
  9. 9.
    DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, Das D, Vorobiev SM, Iwaï H, Pokkuluri PR, Baker D (2011) Improving molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543CrossRefGoogle Scholar
  10. 10.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501CrossRefGoogle Scholar
  11. 11.
    Ioerger TR, Sacchettini JC (2003) TEXTAL system: artificial intelligence techniques for automated protein model building. Methods Enzymol 374:244–270CrossRefGoogle Scholar
  12. 12.
    Jones TA, Kjeldgaard M (1997) Electron-density map interpretation. Methods Enzymol 227:173–230CrossRefGoogle Scholar
  13. 13.
    Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr A 47:110–119CrossRefGoogle Scholar
  14. 14.
    Keating KS, Pyle AM (2010) Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc Natl Acad Sci 107:8177–8182CrossRefGoogle Scholar
  15. 15.
    Kovalevsky AY, Liu F, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Webber IT (2006) Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol 363:161–173Google Scholar
  16. 15.
    Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179CrossRefGoogle Scholar
  17. 16.
    Levitt DG (2001) A new software routine automates the fitting of protein X-ray crystallographic electron-density maps. Acta Crystallogr D 57:1013–1019CrossRefGoogle Scholar
  18. 17.
    Li M, DiMaio F, Zhou D, Gustchina A, Lubkowski J, Dauter Z, Baker D, Wlodawer A (2011) Crystal structure of XMRV protease differs from the structures of other retropepsins. Nat Struct Mol Biol 18:227–229CrossRefGoogle Scholar
  19. 18.
    Marek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, Takagi M, Damborsky J (2000) Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39:14082–14086CrossRefGoogle Scholar
  20. 19.
    McRee DE (1999) XtalView/Xfit – a versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125:156–165CrossRefGoogle Scholar
  21. 20.
    Merritt EA, Bacon DJ (1997) Raster3D-Photorealistic molecular graphics. Methods Enzymol 277:505–524CrossRefGoogle Scholar
  22. 21.
    Murshudov GN, Skubák P, Lebedev A, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Fei L, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67:355–367CrossRefGoogle Scholar
  23. 22.
    Newman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC (1999) Haloalkane dehalogenases: structure of a rhodococcus enzyme. Biochemistry 38:16105–16114CrossRefGoogle Scholar
  24. 23.
    Oldfield TJ (1994) In: Bailey S, Hubbard R, Waller DA (eds) Proceedings of the CCP4 study weekend from first map to final model. Daresbury Laboratory, Warrington, pp 15–16Google Scholar
  25. 24.
    Oldfield TJ (2002) Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps. Acta Crystallogr D 58:487–493CrossRefGoogle Scholar
  26. 25.
    Oldfield TJ (2003) Automated tracing of electron-density maps of proteins. Acta Crystallogr D 59:483–491CrossRefGoogle Scholar
  27. 26.
    Pavelcik F, Schneider B (2008) Building of RNA and DNA double helices into electron density. Acta Crystallogr D 64:620–626CrossRefGoogle Scholar
  28. 27.
    Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463CrossRefGoogle Scholar
  29. 28.
    Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149CrossRefGoogle Scholar
  30. 29.
    Schröder G, Levitt M, Brünger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222CrossRefGoogle Scholar
  31. 30.
    Skinner MM, Zhang H, Leschnitzer DH, Guan Y, Bellamy H, Sweet RM, Gray CW, Konings RNH, Wang AH-J, Terwilliger TC (1994) Structure of the gene V protein of bacteriophage f1 determined by multiwavelength X-ray diffraction on the selenomethionyl protein. Proc Natl Acad Sci USA 91:2071–2075Google Scholar
  32. 30.
    Sorensen TL-M, Molleer JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675CrossRefGoogle Scholar
  33. 31.
    Terwilliger TC (2001) Map-likelihood phasing. Acta Crystallogr D 57:1763–1775CrossRefGoogle Scholar
  34. 32.
    Terwilliger TC (2003) Automated main-chain model-building by template-matching and iterative fragment extension. Acta Crystallogr D 59:38–44CrossRefGoogle Scholar
  35. 33.
    Terwilliger TC (2003) Automated side-chain model building and sequence assignment by template-matching. Acta Crystallogr D 59:45–49CrossRefGoogle Scholar
  36. 34.
    Terwilliger TC (2003) Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement. Acta Crystallogr D 59:1174–1182CrossRefGoogle Scholar
  37. 35.
    Terwilliger TC (2004) Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr D 60:2144–2149CrossRefGoogle Scholar
  38. 36.
    Terwilliger TC (2010) Rapid model-building of α-helices in electron density maps. Acta Crystallogr D 66:268–275CrossRefGoogle Scholar
  39. 37.
    Terwilliger TC (2010) Rapid model-building of β-sheets in electron density maps. Acta Crystallogr D 66:276–284CrossRefGoogle Scholar
  40. 38.
    Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Adams PD, Read RJ, Zwart P, Hung L-W (2008) Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallogr D 64:515–524CrossRefGoogle Scholar
  41. 39.
    Turk D (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation and Seine Anwendung auf Verschiedene Protein-Strukturaufklerungen, PhD thesis, Technische Universitaet Muenchen, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryBioscience Division and Los Alamos InstitutesLos AlamosUSA

Personalised recommendations