The Zen of Model Anomalies – Correct Most of Them. Treasure the Meaningful Valid Few. Live Serenely with the Rest!

  • Jane S. RichardsonEmail author
  • David C. Richardson
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Historically, validation has been considered primarily as a gatekeeping function done at the end of a structure solution. Currently, the most interesting and important part of validation is the opportunity to correct diagnosed errors, provided mainly by local as opposed to global criteria, and available to you throughout the crystallographic process. Elsewhere in this book, you will hear about up-to-date methods in the data and model-to-data aspects of validation. This chapter addresses model validation and model improvement, first about current best-practice methodology (as done on the MolProbity website and elsewhere), and second about some important developments to anticipate in the near future.

Model validation has three primary parts: (a) geometry (bond lengths and angles, planarity, chirality), (b) conformation (rotamers, Ramachandran, ring pucker, RNA backbone conformers), (c) and sterics (clashes, H-bonds, packing). All of these both enhance and must be considered along with the information from electron density. The model criteria are primarily local, but their rate of occurrence can also be summarized as a global score.


Model validation Model improvement All-atom contacts MolProbity RNA backbone 



Our work on model validation and improvement is supported by NIH grants: R01GM073919 for the MolProbity service, P01GM063210 for validation in Phenix, R01GM073930 for RNA validation, and R01GM088674 for improvement at low resolution.


  1. 1.
    Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221 (open access)CrossRefGoogle Scholar
  2. 2.
    Arendall WB III, Tempel W, Richardson JS, Zhou W, Wang S, Davis IW, Liu Z-J, Rose JP, Carson WM, Luo M, Richardson DC, Wang B-C (2005) A test of enhancing model accuracy in high-throughput crystallography. J Struct Funct Genomics 6:1–11CrossRefGoogle Scholar
  3. 3.
    Chen VB, Davis IW, Richardson DC (2009) KiNG (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci 18:2403–2409CrossRefGoogle Scholar
  4. 4.
    Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21 (open access)CrossRefGoogle Scholar
  5. 5.
    Davis IW, Arendall WB III, Richardson JS, Richardson DC (2006) The backrub motion: how protein backbone shrugs when a sidechain dances. Structure 14:265–274CrossRefGoogle Scholar
  6. 6.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501CrossRefGoogle Scholar
  7. 7.
    Engh RA, Huber R (1991) Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallogr A 47:392–400CrossRefGoogle Scholar
  8. 8.
    Gore S, Velankar S, Kleywegt GJ (2012) Implementing an X-ray validation pipeline for the Protein Data Bank. Acta Crystallogr D 68:478–483 (open access)CrossRefGoogle Scholar
  9. 9.
    Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272CrossRefGoogle Scholar
  10. 10.
    Keating K, Pyle AM (2012) RCrane: semi-automated RNA model building. Acta Crystallogr D 68:985–995CrossRefGoogle Scholar
  11. 11.
    Kleywegt GJ, Jones TA (1996) Phi/psi-chology: Ramachandran revisited. Structure 4:1395–1400CrossRefGoogle Scholar
  12. 12.
    Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins: Struct Funct Genetics 40:389–408CrossRefGoogle Scholar
  13. 13.
    Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Ca geometry: ϕ, ψ and Cβ deviation. Proteins: Struct Funct Genetics 50:437–450CrossRefGoogle Scholar
  14. 14.
    Luethy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85CrossRefGoogle Scholar
  15. 15.
    Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364CrossRefGoogle Scholar
  16. 16.
    Read RJ, Adams PD, Arendall WB III, Brunger AT, Emsley P, Joosten RP, Kleywegt GJ, Krissinel EB, LüttekeT OZ, Perrakis A, Richardson JS, Sheffler WH, Smith JL, Tickle IJ, Vriend G, Zwart PH (2011) A new generation of crystallographic validation tools for the protein data bank. Structure 19:1395–1412, (open access); Faculty of 1000 “Must Read”CrossRefGoogle Scholar
  17. 17.
    Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM (2008) RNA backbone: consensus all-angle conformers and modular string nomenclature. RNA 14:465–481 (open access)CrossRefGoogle Scholar
  18. 18.
    Scheffler W, Baker D (2010) RosettaHoles2: a volumetric packing measure for protein structure refinement and validation. Protein Sci 19:1991–1995CrossRefGoogle Scholar
  19. 19.
    Ting D, Wang G, Shapovalov M, Mitra R, Jordan MI, Dunbrack RL Jr (2010) Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical dirichlet process model. PLoS Comp Biol 6:e1000763 (open access)CrossRefGoogle Scholar
  20. 20.
    Word JM, Lovell SC, LaBean TH, Zalis ME, Presley BK, Richardson JS, Richardson DC (1999) Visualizing and quantitating molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 285:1711–1733CrossRefGoogle Scholar
  21. 21.
    Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747CrossRefGoogle Scholar

Web Sites

  1. EDS (Electron Density Server):
  2. PDB (at RCSB) Validation Server:
  3. Richardson Lab for KiNG, Reduce, Suitename, Top8000, etc:
  4. Verify3D profile analysis:
  5. wwPDB info about referee validation reports:
  6. wwPDB link to Xray Validation Task Force:

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA

Personalised recommendations