Lectins of Marine Origin and Their Clinical Applications

  • Yasuharu Watanabe
  • Takako Naganuma
  • Tomohisa Ogawa
  • Koji Muramoto
Chapter

Abstract

During the past several decades, intensive investigations have been conducted to clarify the biochemical and physiological properties of lectins from marine organisms, including cyanobacteria, algae, and invertebrates and fish. These investigations have revealed that lectins are highly diversified in terms of not only structural aspects but also functional aspects, including unique carbohydrate-binding specificities. Lectins are still being intensively investigated to understand their biological roles in cell recognition and biodefense as well as to employ them as valuable tools for studying complex carbohydrates in solution and on cell surfaces. Here, we review the structures and activities of lectins from marine organisms and their applications as carbohydrate recognition molecules and medicinal agents with antitumor and antiviral activities.

Keywords

Human Immunodeficiency Virus White Spot Syndrome Virus Head Kidney Skin Mucus Galanthus Nivalis Agglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (23380121) from the Ministry of Education, Science, Sports, and Culture of Japan.

References

  1. 1.
    Ogawa T, Watanabe M, Naganuma T, Muramoto K (2011) Diversified carbohydrate-binding lectins from marine resources. J Amino Acids. doi: 10.4061/2011/838914 PubMedGoogle Scholar
  2. 2.
    Sharon N, Lis H (2003) Lectins. Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. 3.
    Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217PubMedCrossRefGoogle Scholar
  4. 4.
    Wei J, Xu D, Zhou J, Cui H, Yan Y, Ouyang Z, Gong J, Huang Y, Huang X, Qin Q (2010) Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper Epinephelus coioides. Fish Shellfish Immunol 28:178–186PubMedCrossRefGoogle Scholar
  5. 5.
    Wei X, Liu X, Yang J, Fang J, Qiao H, Zhang Y, Yang J (2012) Two C-type lectins from shrimp Litopeneaeus vannamei that might be involved in immune response against bacteria and virus. Fish Shellfish Immunol 32:132–140PubMedCrossRefGoogle Scholar
  6. 6.
    Hosono M, Sugawara S, Ogawa Y, Kohno T, Takayanagi M, Nitta K (2005) Purification, characterization, cDNA cloning, and expression of asialofetuin-binding C-type lectin from eggs of shishamo smelt (Osmerus lanceolatus). Biochim Biophys Acta 1725:160–173PubMedCrossRefGoogle Scholar
  7. 7.
    Yu Y, Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, Wu T, Guo L, Dong M, Chen S, Xu A (2007) A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179:8425–8434PubMedGoogle Scholar
  8. 8.
    Tsutsui S, Iwamoto K, Nakamura O, Watanabe T (2007) Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Mol Immunol 44:691–702PubMedCrossRefGoogle Scholar
  9. 9.
    Russell S, Hayes MA, Lumsden JS (2009) Immunohistochemical localization of rainbow trout ladderlectin and intelectin in healthy and infected rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 26:154–163PubMedCrossRefGoogle Scholar
  10. 10.
    Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438PubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura O, Matsuoka H, Ogawa O, Muramoto K, Kamiya H, Watanabe T (2006) Opsonic effect of congerin, a mucosal galectin of the Japanese conger, Conger myriaster (Brevoort). Fish Shellfish Immunol 20:433–435PubMedCrossRefGoogle Scholar
  12. 12.
    Konno A, Yonemaru S, Kitagawa A, Muramoto K, Shirai T, Ogawa T (2010) Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants. BMC Evol Biol 10. article 43. doi: 10.1186/1471-2148-10-43
  13. 13.
    Shirai T, Shionyu-Mitsuyama C, Ogawa T, Muramoto K (2006) Structure based studies of the adaptive diversification process of congerins. Mol Div 10:567–573CrossRefGoogle Scholar
  14. 14.
    Watanabe M, Nakamura O, Muramoto K, Ogawa T (2012) Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by D-mannoside. J Biol Chem 287:31061–31072Google Scholar
  15. 15.
    Vizzini A, Parrinello D, Sanfratello MA, Salerno G, Cammarata M, Parrinello N (2012) Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis. Fish Shellfish Immunol 32:101–109PubMedCrossRefGoogle Scholar
  16. 16.
    Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 179:3086–3098PubMedGoogle Scholar
  17. 17.
    Hwang JS, Takaku Y, Momose T, Adamcyk P, Ozbek S, Ikeo K, Khaturin K, Hemmrich G, Bosch TCG, Holstein TW, David CN, Gojobori T (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Nat Aca Sci U S A 107:18539–18544CrossRefGoogle Scholar
  18. 18.
    Park HJ, Kim JW, Kim EG, Kim HN, Chae YS, Jeong JM, Kim DH, Park CI (2012) Molecular cloning and expression analysis of two distinct F-type lectins from the rock bream Oplegnathus fasciatus. Dev Comp immunol 36:230–235PubMedCrossRefGoogle Scholar
  19. 19.
    Salerno G, Parisi MG, Parrinello D, Benenati G, Vizzini A, Vazzana M, Vasta GR, Cammarata M (2009) F-type lectin from the sea bass (Dicentrarchus labrax): purification, cDNA cloning, tissue expression and localization, and opsonic activity. Fish Shellfish Immunol 27:143–153PubMedCrossRefGoogle Scholar
  20. 20.
    Shiina N, Tateno H, Ogawa T, Muramoto K, Saneyoshi M, Kamiya H (2002) Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Oncorhynchus keta) eggs. Fish Sci 68:1352–1366CrossRefGoogle Scholar
  21. 21.
    Shirai T, Watanabe Y, Lee MS, Ogawa T, Muramoto K (2009) Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol 391:390–403PubMedCrossRefGoogle Scholar
  22. 22.
    Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O, Watanabe T, Kamiya H, Naganuma T, Ogawa T, Naudé RJ, Muramoto K (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33:187–197PubMedCrossRefGoogle Scholar
  23. 23.
    Ng TB, Lam YW, Woo NYS (2003) The immunostimulatory activity and stability of grass carp (Ctenopharyngodon idellus) roe lectin. Vet Immunol Immunopathol 94:105–112PubMedCrossRefGoogle Scholar
  24. 24.
    Schwarz RS, Hodes-Villamar L, Fitzpatrick KA, Fain MG, Hughes AL, Cadavid LF (2007) A gene family of putative immune recognition molecules in the hydroid Hydractinia. Immunogenet 59:233–246CrossRefGoogle Scholar
  25. 25.
    Zhang H, Peatman E, Liu H, Feng H, Chen L, Liu Z (2012) Molecular characterization of three L-type lectin genes from channel catfish, Ictalurus punctatus and their responses to Edwardsiella ictaluri challenge. Fish Shellfish Immunol 32:598–608PubMedCrossRefGoogle Scholar
  26. 26.
    Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H (2003) Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol Pt B 136:723–730CrossRefGoogle Scholar
  27. 27.
    Tsutsui S, Okamoto M, Ono M, Suetake H, Kikuchi K, Nakamura O, Suzuki Y, Watanabe T (2011) A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallilrein. Glycobiol 21:1580–1587CrossRefGoogle Scholar
  28. 28.
    Hori K, Sato Y, Ito K, Fujiwara Y, Iwamoto Y, Makino H, Kawakubo A (2007) Strict specificity for high-mannose type N-glycan and primary structure of a red alga Eucheuma serra lectin. Glycobiol 17:479–491CrossRefGoogle Scholar
  29. 29.
    Tateno H, Ogawa T, Muramoto K, Kamiya H, Saneyoshi M (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem 66:604–612PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe Y, Shiina N, Shinozaki F, Yokoyama H, Kominami J, Nakamura-Tsuruta S, Hirabayashi J, Sugahara K, Kamiya H, Matsubara H, Ogawa T, Muramoto K (2008) Isolation and characterization of L-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. Dev Comp Immunol 32:487–499PubMedCrossRefGoogle Scholar
  31. 31.
    Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247PubMedCrossRefGoogle Scholar
  32. 32.
    Yamazaki M, Esumi-Kurisu M, Mizuno D, Ogata K, Kamiya H (1983) Marine animal lectin-dependent tumor recognition by macrophages. Gann 74:405–411PubMedGoogle Scholar
  33. 33.
    Kawano T, Sugawara S, Hosono M, Tatsuta T, Ogawa Y, Fujimura T, Taka H, Murayama K, Nitta K (2009) Globotriaosylceramido-expressing Burkitt’s lymphoma cells are committed to early apoptotic status by rhamnose-binding lectin from catfish eggs. Biol Pharm Bull 32:345–353PubMedCrossRefGoogle Scholar
  34. 34.
    Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435PubMedCrossRefGoogle Scholar
  35. 35.
    Molchanova V, Chikalovets I, Chernikov O, Belogortseva N, Li W, Wang JH, Yang DYO, Zheng YT, Lukyanov P (2007) A new lectin from the sea worm Serpula vermicularis:isolation, characterization and anti-HIV activity. Comp Biochem Physiol Pt C 145:184–193Google Scholar
  36. 36.
    Mori T, O’Keefe BR, Sowder BC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353PubMedCrossRefGoogle Scholar
  37. 37.
    Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K (2011) High mannose-binding lectin with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem 285:19446–19458CrossRefGoogle Scholar
  38. 38.
    Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T et al (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530PubMedGoogle Scholar
  39. 39.
    Keeffe JR, Gnanapragasam PNP, Gillespie SK, Yong J, Bjorkman PJ, Mayo SL (2011) Designed oligomers of cyanovirin-N show enhanced HIV neutralization. Proc Natl Acad Sci U S A 108:14079–14084PubMedCrossRefGoogle Scholar
  40. 40.
    Patsalo V, Raleigh DP, Green DF (2011) Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 50:10698–10712PubMedCrossRefGoogle Scholar
  41. 41.
    Wang N, Lee YH, Lee J (2008) Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol Pt B 149:354–361CrossRefGoogle Scholar
  42. 42.
    Matsubara H, Hayashi T, Ogawa T, Muramoto K, Jimbo M, Kamiya H (2008) Modulating effect of acorn barnacle C-type lectins on the crystallization of calcium carbonate. Fish Sci 74:418–424CrossRefGoogle Scholar
  43. 43.
    Kamiya H, Jimbo M, Yako H, Muramoto K, Nakamura O, Kado R, Watanabe T (2002) Participation of the C-type hemolymph lectin in mineralization of the acorn barnacle Megabalanus rosa. Mar Biol 140:1235–1240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yasuharu Watanabe
    • 1
  • Takako Naganuma
    • 1
  • Tomohisa Ogawa
    • 1
  • Koji Muramoto
    • 1
  1. 1.Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations