Adhesive Bonding of Attachments in Automotive Final Assembly

  • Loucas Papadakis
  • Vassos Vassiliou
  • Michalis Menicou
  • Manuel Schiel
  • Klaus Dilger
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 229)

Abstract

In modern societies there is an increasing concern regarding the environmental impact of automotives is driving automotive manufacturers to develop lighter and, thus, less fuel consuming vehicles. Customers’ protection during crash is a major demand which motivates automotive manufacturers to improve production processes which can satisfy the highly demanding market. Simultaneously, the introduction of new manufacturing techniques is strongly correlated with additional costs, which should be analyzed and quantified, in order to prove the sustainability of such processes for automotive production. This chapter considers adhesive bonding for joining attachments (i.e. roof components) on painted automotive shell surfaces as a potential technique in volume production. In order to introduce such type of adhesive joining process in current production lines, different process chain scenarios are proposed depending on the paint type in order to achieve the required strength of connection, especially during crash loads. Production costs are gathered and a proposed cost analysis is presented for evaluating the suggested scenarios aiming to identify cost intensive procedures.

Keywords

Adhesive bonding Car body Cost analysis Final assembly Laser ablation Painting 

References

  1. 1.
    Daniels J (1984) Design implications of adhesive bonding in car body construction. Int J Adhesion Adhesives 4(1):5–8CrossRefGoogle Scholar
  2. 2.
    Barnes TA, Pashby IR (2000) Joining techniques for aluminium spaceframes used in automobiles, Part II—adhesive bonding and mechanical fasteners. J Mater Process Technol 99:72–79CrossRefGoogle Scholar
  3. 3.
    Fathil MFBM (2008) Painting process improvement for automotive industry, University Malaysia Pahang, Nov 2008Google Scholar
  4. 4.
    Kessel A, Dilger K (2006) Kleben auf Lack. Einfluss der Lacktrocknung auf die Hafteigenschaften. J für Oberflaechentechnik 46(9):56–59Google Scholar
  5. 5.
    Kessel A (2009) Lackautohäsion in kraftübertragenden Klebverbindungen im Automobilbau. Dissertation Technical University Braunschweig, Shaker, AachenGoogle Scholar
  6. 6.
    Woelfel G (2005) BMW Werk Leipzig setzt neue Maßstäbe in der Automobillackierung. Die Oberflaechen-Zeitung, GermanyGoogle Scholar
  7. 7.
    Hilt M (2000) Perspektiven der UV-Strahlungstrocknung von Klarlacken. Metalloberflaeche 54(11):43–45Google Scholar
  8. 8.
    Nothhelfer-Richer R, Kunz G, Eisenbach CD (2005) Stone chip resistance of coatings on plastic substrates. Stuttgarter Kunststoff Kolloquium 19:1–6Google Scholar
  9. 9.
    Scholz W (2003) Improving substrate wetting with coating additives. Adhesive and finishing symposium, vol 28, MunichGoogle Scholar
  10. 10.
    Kleber W (2000) Elektrostatische Oberflächenbeschichtung, Teil 4: Technologische Anforderungen an die Anlagentechnik. Metalloberflaeche 54:48–51Google Scholar
  11. 11.
    Mechtel M, Melchiors M (2003) 2-K-Wasserklarlack für die Automobil-Lackierung. J für Oberflaechentechnik 43:42–46Google Scholar
  12. 12.
    Somborn R (2007) Lackwunden durch Steinschläge. Unzureichende Stein schlagbeständigkeit, Farbe und Lack 113(1):50–52Google Scholar
  13. 13.
    Schmatz G (1999) Verkleben von fertiglackierten Aluminiumpaneelen im Seitenwandbereich von LRV (light rail vehicle) aus prozess-technischer Sicht. Praxis-Forum, Arbeitskreis Automobil, ViennaGoogle Scholar
  14. 14.
    Fluegge W (2004) Fügen von oberflächenbeschichteten Stahlwerkstoffen. Conference report: DVS-Report, SalzgitterGoogle Scholar
  15. 15.
    Meschut G, Friedrich H (2003) Zukünftige Fügekonzepte für Automobil-strukturen in Mischbauweise, Conference report: Dresdner LeichtbausymposiumGoogle Scholar
  16. 16.
    Lamprecht K, Geiger M (2005) Experimental and numerical investigation of the formability of laser welded patchwork blanks. Conference report: advanced materials researchGoogle Scholar
  17. 17.
    Borsutzki M, Matthissen D, Schaumann TW, Sieg HJ (2005) Modern methods of material characterization during the development of new steels for automotive application. Conference report: SCT, international conference on steels in cars and trucksGoogle Scholar
  18. 18.
    Bleck W, Frehn A, Larour P, Steinbeck G (2004) Untersuchungen zur Ermittlung der Dehnratenabhängigkeit von modernen Karosseriestählen. Materialwissenschaft und Werkstofftechnik 35(8):505–513CrossRefGoogle Scholar
  19. 19.
    Hahn O, Kurzok JR, Oeter M, Brede M, Hesebeck O, Dilge K, Schmid G (2002) Untersuchungen zum Crashverhalten geklebter und hybridgefügter Stahlblechverbindungen. Forschung für die Praxis, PaderbornGoogle Scholar
  20. 20.
    Schiel M, Hanssen E, Frauenhofer M, Dilger K (2011) Determination of mechanical properties of adhesive joints on painted substrates. In: International conference on structural adhesive bonding, Porto, 7–8 July 2011Google Scholar
  21. 21.
    Papadakis L (2008) Simulation of the structural effects of welded frame assemblies in manufacturing process chains. Dissertation, Technische Universitaet MuenchenGoogle Scholar
  22. 22.
    Papadakis L, Vassiliou V, Menicou M, Schiel M, Dilger K (2012) Adhesive bonding on painted car bodies in automotive production lines: alternatives and cost analysis. Lecture notes in engineering and computer science: proceedings of the world congress on engineering, WCE 2012, 4–6 July 2012 U.K , London, pp 1382–1387Google Scholar
  23. 23.
    Sullivan GW, Wicks ME, Kowlling CP (2009) Engineering economy, 14th edn. Pearson Education, New JerseyGoogle Scholar
  24. 24.
    Roy R, Souchoroukov P, Shehab E (2011) Detailed cost estimating in the automotive industry: data and information requirements. Int J Prod Econ 133:694–707CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Loucas Papadakis
    • 1
  • Vassos Vassiliou
    • 2
  • Michalis Menicou
    • 1
  • Manuel Schiel
    • 3
  • Klaus Dilger
    • 3
  1. 1.Department of Mechanical EngineeringFrederick UniversityNicosiaCyprus
  2. 2.Frederick Research CenterNicosiaCyprus
  3. 3.Institute for Joining and Welding (ifs)Technische Universitaet BraunschweigBraunschweigGermany

Personalised recommendations