Advertisement

Phylogeny and Biological Features of Thermophiles

  • Takashi Itoh
  • Takao Iino
Chapter

Abstract

Thermophilic prokaryotes constitute a quite large group among the currently known prokaryotic species. At present, more than 220 genera and 580 species of the thermophiles have been isolated from various thermal and non-thermal environments and characterized. They are classified in more than 16 phyla of the two domains, Archaea and Bacteria. This chapter provides an overview of their phylogenetic relationships and their phenotypic features in the light of the current prokaryote systematics. Possible reasons for the phylogenetic diversity of the thermophiles in geothermal habitats are also discussed.

Keywords

Thermophile Archaea Bacteria 16S rRNA Genome Systematics Phylogeny 

References

  1. Bapteste E, Brochier C, Boucher Y (2005) Archaea 1:353–363PubMedCrossRefGoogle Scholar
  2. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Proc Natl Acad Sci USA 91:1609–1613PubMedCrossRefGoogle Scholar
  3. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Proc Natl Acad Sci USA 93:9188–9193PubMedCrossRefGoogle Scholar
  4. Boussau B, Guéguen L, Gouy M (2008) BMC Evol Biol 8:272PubMedCrossRefGoogle Scholar
  5. Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey GG (2007) Appl Environ Microbiol 73:6669–6677PubMedCrossRefGoogle Scholar
  6. Brochier C, Forterre P, Gribaldo S (2004) Genome Biol 5:R17PubMedCrossRefGoogle Scholar
  7. Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Genome Biol 6:R42PubMedCrossRefGoogle Scholar
  8. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Nat Rev Microbiol 6:245–252PubMedCrossRefGoogle Scholar
  9. Brochier-Armanet C, Forterre P, Gribaldo S (2011) Curr Opin Microbiol 14:274–281PubMedCrossRefGoogle Scholar
  10. Brock TD (1986) In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley, New York, pp 1–16Google Scholar
  11. Brugess EA, Wagner ID, Wiegel A (2007) In: Gerday C, Glandorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 13–29Google Scholar
  12. Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Science 317:523–526PubMedCrossRefGoogle Scholar
  13. Ciccarelli F, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Science 311:1283–1287PubMedCrossRefGoogle Scholar
  14. Csúrös M, Miklós I (2009) Mol Biol Evol 26:2087–2095PubMedCrossRefGoogle Scholar
  15. de la Torre J, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Environ Microbiol 10:810–818PubMedCrossRefGoogle Scholar
  16. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) Nature 392:353–358PubMedCrossRefGoogle Scholar
  17. DeLong EF (1992) Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  18. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) Proc Natl Acad Sci USA 105:8102–8107PubMedCrossRefGoogle Scholar
  19. Forterre P, de la Tour CB, Philippe H, Duguet M (2000) Trends Genet 16:152–154PubMedCrossRefGoogle Scholar
  20. Forterre P, Gribaldo S, Brochier-Armanet C (2005) In: Garrett R, Klenk H-P (eds) Archaea: evolution, physiology, and molecular biology. Blackwell, Malden, pp 17–28Google Scholar
  21. Fuchs T, Huber H, Burggraf S, Stetter KO (1996) Syst Appl Microbiol 19:56–60CrossRefGoogle Scholar
  22. Gao B, Gupta RS (2007) BMC Genomics 8:86PubMedCrossRefGoogle Scholar
  23. Garrity GM, Holt JG (2001) In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and deeply branching and phototrophic bacteria. Springer, New York, pp 119–166CrossRefGoogle Scholar
  24. Gaucher E, Kratzer JT, Randall RN (2010) Cold Spring Harb Perspect Biol 2:a00238CrossRefGoogle Scholar
  25. Gribaldo S, Philippe H (2002) Theor Popul Biol 61:391–408PubMedCrossRefGoogle Scholar
  26. Griffiths E, Gupta RS (2006) Int J Syst Evol Microbiol 56:99–107PubMedCrossRefGoogle Scholar
  27. Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA (2004) J Bacteriol 186:6956–6969PubMedCrossRefGoogle Scholar
  28. Hochheimer A, Hedderich R, Thauer RK (1998) Arch Microbiol 170:389–393PubMedCrossRefGoogle Scholar
  29. Hohn MJ, Hedlund BP, Huber H (2002) Syst Appl Microbiol 25:551–554PubMedCrossRefGoogle Scholar
  30. Huber H, Hohn MJ, Rachel R, Fuchs T, Wlmmer VC, Stetter KO (2002) Nature 417:63–67PubMedCrossRefGoogle Scholar
  31. Hugenholtz P, Stackebrandt E (2004) Int J Syst Evol Microbiol 54:2049–2051PubMedCrossRefGoogle Scholar
  32. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) J Bacteriol 180:366–376PubMedGoogle Scholar
  33. Itoh T (2003) J Biosci Bioeng 96:203–212PubMedGoogle Scholar
  34. Kashefi K, Holmes DE, Reysenbach A-L, Lovely DR (2002) Appl Environ Microbiol 68:1735–1742PubMedCrossRefGoogle Scholar
  35. Kunisawa T (2011) Int J Syst Evol Microbiol 61:1944–1953PubMedCrossRefGoogle Scholar
  36. Langworthy TA, Holzer G, Zeikus JG, Tornabene TG (1983) Syst Appl Microbiol 4:1–17PubMedCrossRefGoogle Scholar
  37. Ludwig W, Klenk H-P (2001) In: Boone DR, Castenholz RW (eds) The Archaea and deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, pp 49–65Google Scholar
  38. Ludwig W, Schleifer KH (1999) ASM News 65:752–757Google Scholar
  39. Ludwig W, Schleifer K-L, Whitman WB (2009) In: De Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn, The Firmicutes. Springer, New York, pp 1–13Google Scholar
  40. Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Biol Direct 2:33PubMedCrossRefGoogle Scholar
  41. Matte-Tailliez O, Brochier C, Forterre P, Philippe H (2002) Mol Biol Evol 19:631–639PubMedCrossRefGoogle Scholar
  42. Miroshnichenko ML, Kolganova TV, Spring S, Chernyh N, Bonch-Osmolovskaya EA (2010) Int J Syst Evol Microbiol 60:2120–2123PubMedCrossRefGoogle Scholar
  43. Nealson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Nature 399:323–329CrossRefGoogle Scholar
  44. Nesbø CL, Dlutek M, Doolittle WF (2006) Genetics 172:759–769PubMedCrossRefGoogle Scholar
  45. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee G-J, Hattori M, Kanai A, Atomi H, Takai K, Takami H (2011) Nucleic Acids Res 39:3204–3223PubMedCrossRefGoogle Scholar
  46. Perevalova AA, Bidzhieva SK, Kublanov IV, Hinrichs K-U, Liu XL, Mardanov AV, Lebedinsky AV, Bonch-Osmolovskaya EA (2010) Int J Syst Evol Microbiol 60:2082–2088PubMedCrossRefGoogle Scholar
  47. Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) Genome Biol 9:R158PubMedCrossRefGoogle Scholar
  48. Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA (2009) Int J Syst Evol Microbiol 59:3116–3122PubMedCrossRefGoogle Scholar
  49. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Proc Natl Acad Sci USA 106:8605–8610PubMedCrossRefGoogle Scholar
  50. Reysenbach A-L, Cady SL (2001) Trends Microbiol 9:79–86PubMedCrossRefGoogle Scholar
  51. Reysenbach A-L, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) Nature 442:444–447PubMedCrossRefGoogle Scholar
  52. Ruepp A, Graml W, Santos-Martinez M-L, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) Nature 407:508–513PubMedCrossRefGoogle Scholar
  53. Schleper C (2005) In: Garrett R, Klenk H-P (eds) Archaea: evolution, physiology, and molecular biology. Blackwell, Malden, pp 39–50Google Scholar
  54. Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Scherbinina OG, Shakhova V, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) Proc Natl Acad Sci USA 99:4644–4649PubMedCrossRefGoogle Scholar
  55. Snel B, Huynen MA, Dutilh BE (2005) Annu Rev Microbiol 59:191–209PubMedCrossRefGoogle Scholar
  56. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Trends Microbiol 18:331–340PubMedCrossRefGoogle Scholar
  57. Stackebrandt E, Goebel BM (1994) Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  58. Stetter KO (1995) ASM News 61:285–290Google Scholar
  59. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) FEMS Microbiol Rev 75:117–124CrossRefGoogle Scholar
  60. Takai K, Horikoshi K (1999) Genetics 152:1285–1297PubMedGoogle Scholar
  61. Waters E, Hohn MJ, Ahe I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRefGoogle Scholar
  62. Woese CR, Achenbach L, Rouviere P, Mandelco L (1991) Syst Appl Microbiol 14:364–371PubMedCrossRefGoogle Scholar
  63. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J-F, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H-K, Eisen JA (2009a) Nature 462:1056–1060PubMedCrossRefGoogle Scholar
  64. Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ, Badger JH, Madupu R, Ward NL, Eisen JA (2009b) PLoS One 4:e4207PubMedCrossRefGoogle Scholar
  65. Yang S, Doolittle RF, Bourne PE (2005) Proc Natl Acad Sci USA 102:373–378PubMedCrossRefGoogle Scholar
  66. Yokobori S-I, Itoh T, Yoshinari S, Nomura N, Sako Y, Yamagishi A, Oshima T, Kita K, Watanabe Y (2009) BMC Evol Biol 9:98CrossRefGoogle Scholar
  67. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbø CL, Doolittle WF, Gogarten JP, Noll KM (2009) Proc Natl Acad Sci USA 106:5865–5870PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Japan Collection of MicroorganismsRIKEN BioResource CenterTsukubaJapan

Personalised recommendations