Satellite-Based Ocean Surface Turbulent Fluxes



Ocean surface turbulent fluxes of momentum, heat, and water vapor respond to and determine the coupling between the atmosphere and the ocean and are excellent indicators of air–sea interactions at most temporal and spatial scales. These fluxes can be determined from bulk properties at the sea surface. By combining satellite observations of bulk properties such as sea surface temperature, wind, and humidity, estimates of these fluxes are available globally. The bulk aerodynamic formulations of these fluxes are first reviewed. Satellite retrieval techniques of these bulk properties and operational or semi-operational ocean surface flux products such as the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Observations (HOAPS), the Japanese Oceanic Fluxes with the Use of Remote Observations (J-OFURO), and the US NASA Goddard Space Flight Center Satellite-Based Sea Surface Turbulent Fluxes (GSSTF), as well as merged approach of the Objectively Analyzed Air–Sea Fluxes for the global ocean (OAFlux) are described, and their error and uncertainties are briefly discussed.


Bulk formulae Momentum Heat and latent heat flues Air–sea interactions HOAPS J-OFURO GSSTF OAFlux 



Advanced Along-Track Scanning Radiometer


Advanced Earth Observing Satellite


Advanced Earth Observing Satellite 2


Atmospheric Infrared Sounder


Advanced Microwave Scanning Radiometer-Earth Observing System


Advanced Microwave Sounding Unit


Advanced Scatterometer


Advanced Very High Resolution Radiometer


Climate Forecast System Reanalysis


Coupled Ocean–Atmosphere Response Experiment


Defense Meteorological Satellite Program


Department of Energy


European Centre for Medium-Range Weather Forecasts


Earth incidence angle


European Centre for Medium-Range Weather Forecasts’ 40-year reanalysis


Earth Resource Satellite 1


Earth Resource Satellite 2


First Global Atmospheric Research Program Global Experiment


Global Atmospheric Research Experiment


DISC Goddard Earth Sciences Data and Information Services Center


Geostationary Operational Environmental Satellite


Goddard Space Flight Center Satellite-based Sea surface Turbulent Fluxes


Hamburg Ocean Atmosphere Parameters and fluxes from Satellite observations


Japanese Meteorological Agency


Japanese Oceanic Fluxes with the Use of Remote Observations


Japanese 25-year ReAnalysis


Latent heat flux


Modern Era Retrospective Analysis for Research and Applications


Merged satellite and in-situ data Global Daily SST


Moderate Resolution Imaging Spectroradiometer


National Aeronautics and Space Administration


National Center for Atmospheric Research


National Centers for Environmental Prediction


NASA Scatterometer


Objectively Analyzed Air-sea Fluxes


Quick Scatterometer


Synthetic Aperture Radars


Seasat-A Scatterometer System


Sensible heat flux


Scanning Multichannel Microwave Radiometer


Special Sensor Microwave Imager


Special Sensor Microwave Imager/Sounder


Sea surface temperature


Tropical Rainfall Measuring Mission Microwave Imager


Tropical Rainfall Measuring Mission



This study is supported by the MEaSUREs Program of NASA Science Mission Directorate – Earth Science Division.


  1. Andersson A, Fennig K, Klepp C, Bakan S, Graßl H, Schulz J (2010) The Hamburg ocean atmosphere parameters and fluxes from satellite data – HOAPS-3. Earth Syst Sci Data 2:215–234CrossRefGoogle Scholar
  2. Atlas R, Bloom SC, Hoffman RN, Ardizzone JV, Brin G (1991) Space-based surface wind vectors to aid understanding of air-sea interactions. EOS, Trans Am Geophys Union 72:201–208CrossRefGoogle Scholar
  3. Atlas RM, Hoffman RN, Ardizzone J et al (2011) A cross-calibrated, multi-platform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174CrossRefGoogle Scholar
  4. Beal RC, Young G, Monaldo F, Thompson DR, Winstead N.S, Scott CA (2005) High resolution wind monitoring with wide swath SAR: a user’s guide, Department of Commerce, NOAA, NESDIS and Office of Research and Applications, Washington D.C.Google Scholar
  5. Bentamy A, Katsaros KB, Mestas-Nuñez AM, Drennan WM, Forder EB, Roquet H (2003) Satellite estimates of wind speed and latent heat flux over the global oceans. J Climate 16:637–656CrossRefGoogle Scholar
  6. Black PG, D’Asaro EA, Drennan WM, French JR, Niiler PP, Sanford TB, Terrill EJ, Walsh EJ, Zhang JA (2007) Air-sea exchanges in hurricanes. Bull Am Meteorol Soc 88:357–374CrossRefGoogle Scholar
  7. Born GH, Lame DB, Rygh PJ (1981) A survey of the goals and accomplishments of the seasat mission. In: Gower JFR (ed) Oceanography from space. Plenum Press, New YorkGoogle Scholar
  8. Brunke MA, Zeng X, Anderson S (2002) Uncertainties in sea surface turbulent flux algorithms and data sets. J Geophys Res 107:3141. doi:10.1029/2001JC00092 CrossRefGoogle Scholar
  9. Brunke MA, Fairall CW, Zeng X, Eymard L, Curry JA (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Climate 16:619–635CrossRefGoogle Scholar
  10. Brunke MA, Wang Z, Zeng X, Bosilovich M, Shie C-L (2011) An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global data sets. J Climate 24:469–5493CrossRefGoogle Scholar
  11. Bunker AF (1976) Computation of surface energy flux and annual air-sea interaction cycle of the North Atlantic Ocean. Mon Weather Rev 104:1122–1140CrossRefGoogle Scholar
  12. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Climate 5:354–369CrossRefGoogle Scholar
  13. Chiu LS, Chokngamwong R, Xing Y, Yang R, Shie C-L (2008) Trends and variations of global oceanic evaporation datasets from remote sensing. Acta Oceanol Sin 27:124–135Google Scholar
  14. Chiu LS, Gao S, Shie C-L (2012) Oceanic evaporation: variability and trends. In: Escalante-Ramirez B (ed) Remote sensing – applications. InTech, RijekaGoogle Scholar
  15. Chou S-H, Atlas RM, Shie C-L, Ardizzone J (1995) Estimates of surface humidity and latent heat fluxes over oceans from SSM/I data. Mon Weather Rev 123:2405–2425CrossRefGoogle Scholar
  16. Chou S-H, Shie C-L, Atlas RM, Ardizzone J (1997) Air–sea fluxes retrieved from special sensor microwave imager data. J Geophys Res 102:12705–12726CrossRefGoogle Scholar
  17. Chou S-H, Nelkin E, Ardizzone J, Atlas RM, Shie C-L (2003) Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J Climate 16:3256–3273CrossRefGoogle Scholar
  18. Curry JA et al (2004) SEAFLUX. Bull Am Meteorol Soc 85:409–424CrossRefGoogle Scholar
  19. da Silva AM, Young CC, Levitus S (1994) Atlas of surface marine data, vol 3, Anomalies of heat and momentum fluxes. NOAA/NESDIS, Washington, D.CGoogle Scholar
  20. Donelan MA, Haus BK, Reul N, Plant WJ, Stiassnie M, Graber HC, Brown OB, Saltzman ES (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306. doi:10.1029/2004GL019460 CrossRefGoogle Scholar
  21. Donlon C et al (2007) The global ocean data assimilation project experiment high resolution sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213CrossRefGoogle Scholar
  22. Draper DW, Long DG (2004) Evaluating the effect of rain on SeaWinds scatterometer measurements. J Geophys Res 109:C02005. doi:10.1029/2002JC001741 CrossRefGoogle Scholar
  23. Dzura MS, Etkin VS, Khrupin AS, Paspelov MN, Raev MD (1992) Radiometers-polarimeters: principles of design and applications for sea surface microwave emission polarimetry. In; Proceedings of the IGARSS 92 conference, Houston, 1992, IEEE Press, PiscatawayGoogle Scholar
  24. Esbensen SK, Reynolds RW (1981) Estimating monthly averaged air-sea transfer of heat and momentum using the bulk aerodynamic method. J Phys Oceanogr 11:457–465CrossRefGoogle Scholar
  25. Esbensen SK, Chelton DB, Vockers D, Sun J (1993) An analysis of errors in spatial sensor microwave imager evaporation estimates over the global oceans. J Geophys Res 98:7081–7101CrossRefGoogle Scholar
  26. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res 101:3747–3764CrossRefGoogle Scholar
  27. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571–591CrossRefGoogle Scholar
  28. Freilich MH, Dunbar RS (1999) The accuracy of the NSCAT-1 vector winds: comparisons with NDBC buoys. J Geophys Res 104:11231–11246CrossRefGoogle Scholar
  29. Gao S, Chiu LS (2010) Surface latent heat flux associated with rapidly intensifying tropical cyclone. Int J Remote Sens 31:4699–4710CrossRefGoogle Scholar
  30. Gao S, Chiu LS (2012) Development of statistical typhoon intensity prediction: application to satellite observed rain rate and surface evaporation (STIPER). Weather Forecast 27:240–250CrossRefGoogle Scholar
  31. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  32. Gasiewski AJ, Kunkee DB (1993) Calibration and application of polarization-correlating radiometers. IEEE Trans Microw Theory Tech 41(5):767–772CrossRefGoogle Scholar
  33. Gautam R, Cervone G, Singh RP, Kafatos M (2005) Characteristics of meteorological parameters associated with hurricane Isabel. Geophys Res Lett 32:L04801. doi:10.1029/2004GL021559 CrossRefGoogle Scholar
  34. Goodberlet MA, Swift CT (1992) Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans Geosci Remote Sens 30:1076–1077CrossRefGoogle Scholar
  35. Goodberlet MA, Swift CT, Wilkerson JC (1989) Remotes sensing of ocean surface wind with the special sensor microwave imager. J Geophys Res 94:14547–14555CrossRefGoogle Scholar
  36. Hastenrath S (1980) Heat budget of tropical ocean and atmosphere. J Phys Oceanogr 10:159–170CrossRefGoogle Scholar
  37. Hilburn KA, Shie C-L (2011) Decadal trends and variability in Special Sensor Microwave Imager (SSM/I) brightness temperatures and Earth incidence angle. Report no. 092811, Remote sensing systems, Santa RosaGoogle Scholar
  38. Hsiung J (1985) Estimates of global oceanic meridional heat transport. J Phys Oceanogr 15:1405–1413CrossRefGoogle Scholar
  39. Isemer H-J, Hasse L (1985) The bunker climate atlas of the north Atlantic ocean, vol 1, Observations. Springer, Heidelberg/New York/TokyoCrossRefGoogle Scholar
  40. Isemer H-J, Hasse L (1987) The bunker climate atlas of the north Atlantic ocean, vol 2, Air-sea interactions. Springer, Heidelberg/New York/TokyoCrossRefGoogle Scholar
  41. Jackson DL, Wick GA (2010) Near-surface air temperature retrieval derived from AMSU-A and sea surface temperature observations. J Atmos Oceanic Tech 27:1769–1776CrossRefGoogle Scholar
  42. Jackson DL, Wick GA, Bates JJ (2006) Near-surface retrieval of air temperature and specific humidity using multi-sensor microwave satellite observations. J Geophys Res 111:D10306. doi:10.1029/2005JD006431 CrossRefGoogle Scholar
  43. Jackson DL, Wick GA, Robertson FR (2009) Improved multi-sensor approach to satellite retrieved near-surface specific humidity observations. J Geophys Res 114:D16303. doi:10.1029/2008JD011341 CrossRefGoogle Scholar
  44. Jones C, Peterson P, Gautier C (1999) A new method for deriving ocean surface specific humidity and air temperature: an artificial neural network. J Appl Meteorol 38:1229–1245CrossRefGoogle Scholar
  45. Josey SA, Kent EC, Taylor PK (1998) The Southampton Oceanography Centre (SOC) ocean–atmosphere heat, momentum and freshwater flux atlas. Southampton Oceanography Centre, Report no. 6, SouthamptonGoogle Scholar
  46. Jourdan D, Gautier C (1995) Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data. J Atmos Oceanic Tech 12:46–72CrossRefGoogle Scholar
  47. Konda M, Imasato N, Shibata A (1996) A new method to determine near-sea surface air temperature by using satellite data. J Geophys Res 101:14349–14360CrossRefGoogle Scholar
  48. Krasnopolsky V, Breaker LC, Gemmeill WH (1995) A neural network as a non-linear transfer function model for retrieving surface wind speeds from the special sensor microwave/imager. J Geophy Res 100:11033–11045CrossRefGoogle Scholar
  49. Kraus EB, Businger JA (1994) Atmosphere–ocean interaction. Oxford University Press, New YorkGoogle Scholar
  50. Kubota M, Shikauchi A (1995) Air temperature at ocean surface derived from surface-level humidity. J Oceanogr 51:619–634CrossRefGoogle Scholar
  51. Kummerow C (2009) Development of A fundamental climate data record for SSM/I, SSMIS and future microwave sensors, NOAA CDR selections. Available online at Accessed on 10 Dec 2011
  52. Liu WT (1986) Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon Weather Rev 114:1591–1602CrossRefGoogle Scholar
  53. Liu WT (1988) Moisture and latent heat flux variabilities in the Tropical Pacific derived from satellite data. J Geophys Res 93:6749–6760CrossRefGoogle Scholar
  54. Liu WT, Katsaros KB, Businger JA (1979) Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735CrossRefGoogle Scholar
  55. Liu WT, Xie X, Tang W (2010) Scatterometer’s unique capability in measuring ocean surface stress. In: Barale V, Gower JFR, Alberotanza L (eds) Oceanography from space. Springer, HeidelbergGoogle Scholar
  56. Liu J, Curry JA, Clayson CA, Bourassa MA (2011) High-resolution satellite surface latent heat fluxes in North Atlantic hurricanes. Mon Weather Rev 139:2735–2747CrossRefGoogle Scholar
  57. Lo RC (1983) A comprehensive description of the Special Sensor Microwave Imager (SSM/I) environmental parameter extraction algorithm. Naval Research Laboratory Memo report 5199, Washington D.C.Google Scholar
  58. Lykossov VN (2001) Atmospheric and oceanic boundary layer physics. In: Jones I, Toba Y (eds) Wind stress over the oceans. Cambridge University Press, CambridgeGoogle Scholar
  59. Mears CA, Smith DK, Wentz FJ (2001) Comparison of special sensor microwave imager and buoy-measured wind speeds from 1987 to 1997. J Geophys Res 106:11719–11729CrossRefGoogle Scholar
  60. Meissner T, Smith DK, Wentz FJ (2001) A 10-year intercomparison between collocated special sensor microwave imager oceanic surface wind speed retrievals and global analyses. J Geophys Res 106:11731–11742CrossRefGoogle Scholar
  61. Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204CrossRefGoogle Scholar
  62. Oberhuber JM (1988) An atlas based on the ‘COADS’ data set: the budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean, Max Planck Institute for Meteorology, Report no. 15, HamburgGoogle Scholar
  63. Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283CrossRefGoogle Scholar
  64. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Climate 20:5473–5496CrossRefGoogle Scholar
  65. Roberts B, Clayson CA, Robertson FR, Jackson DL (2010) Predicting near-surface characteristics from SSM/I using neural networks with a first guess approach. J Geophys Res 115:D19113. doi:10.1029/2009JD013099 CrossRefGoogle Scholar
  66. Schlussel P, Schanz L, English G (1995) Retrieval of latent heat flux and longwave irradiance at sea surface differences at the sea surface from SSM/I and AVHRR measurements. Adv Space Res 16:107–116CrossRefGoogle Scholar
  67. Schulz J, Schlussel P, Grassl H (1993) Water vapour in atmospheric boundary layer over oceans from SSM/I measurements. Int J Remote Sens 14:2773–2789CrossRefGoogle Scholar
  68. Schulz J, Jeans M, Stefan E, Schlussel P (1997) Evaluation of satellite-derived latent heat fluxes. J Climate 10:2782–2795CrossRefGoogle Scholar
  69. Shie C-L (2010) Science background for the reprocessing and Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2b) data set for global water and energy cycle research. Science document for the distributed GSSTF2b via Goddard Earth Sciences (GES) Data and Information Services Center (DISC), 18 pp. Available online at Accessed on 10 Dec 2011
  70. Shie C-L (2011) Science background for the reprocessing and Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2c) data set for global water and energy cycle research. Science document for the distributed GSSTF2c via Goddard Earth Sciences (GES) Data and Information Services Center (DISC), 19 pp. Available online at Accessed on 10 Dec 2011
  71. Shie C-L, Hilburn K (2011) A satellite-based global ocean surface turbulent fluxes dataset and the impact of the associated SSM/I brightness temperature. In: Proceeding of the 2011 EUMESAT meteorological satellite conference, Oslo, 5–9 Sept 2011Google Scholar
  72. Shie C-L et al (2009) A note on reviving the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) dataset. Adv Atmos Sci 26:1071–1080CrossRefGoogle Scholar
  73. Shie C-L, Chiu LS, Adler R, Lin I-I, Nelkin E, Ardizzone J (2010) The Goddard Satellite-Based Surface Turbulent Fluxes Dataset – Version 2b (GSSTF 2b) distributed via Goddard Earth Sciences (GES) Data and Information Services Center (DISC) in October 2010. Available online at Accessed on 10 Dec 2011
  74. Shie C-L, Hilburn K, Chiu LS, Adler R, Lin I-I, Nelkin E, Ardizzone J (2011) The Goddard Satellite-Based Surface Turbulent Fluxes Dataset – Version 2c (GSSTF 2c) distributed via Goddard Earth Sciences (GES) Data and Information Services Center (DISC) in October 2011. Available online at Accessed on 10 Dec 2011
  75. Singh R, Joshi PC, Kishtawal CM (2005) A new technique for estimation of surface latent heat fluxes using satellite-based observations. Mon Weather Rev 133:2692–2710CrossRefGoogle Scholar
  76. Singh R, Joshi PC, Kishtawal CM, Pal PK (2006) A new method for estimation of near surface specific humidity over global oceans. Meteorol Atmos Phys 94:1–10CrossRefGoogle Scholar
  77. Sun D (2011) Ocean remote sensing. In: Yang C, Wong D, Maio Q, Yang R (eds) Advanced geoinformation science. CRC Press, Boca RatonGoogle Scholar
  78. Tomita H, Kubota M, Cronin MF, Iwasaki S, Konda M, Ichikawa H (2010) An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J Geophys Res 115:C03018. doi:10.1029/2009JC005545 CrossRefGoogle Scholar
  79. Weare BC, Strub PT, Samuel MD (1981) Annual mean surface heat fluxes in the tropical Pacific Ocean. J Phys Oceanogr 11:705–717CrossRefGoogle Scholar
  80. Weissman DE, Bourassa MA, Tongue J (2002) Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J Atmos Oceanic Technol 19:738–746CrossRefGoogle Scholar
  81. Wentz FJ (1992) Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans Geosci Remote Sens 30:960–972CrossRefGoogle Scholar
  82. Wentz FJ, Ricciardulli L, Hilburn KA, Mears CA (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  83. Wentz FJ, Mattox LA, Peteherych S (1986) New algorithms for microwave measurements of ocean winds: applications to SeaSat and the special sensor microwave imager. J Geophys Res 91:2289–2307CrossRefGoogle Scholar
  84. Williams BA, Long DG (2008) Estimation of hurricane winds from SeaWinds at ultra high resolution. IEEE Trans Geosci Remote Sens 46:2924–2935CrossRefGoogle Scholar
  85. Yu L, Weller RA (2007) Objectively analyzed Air-Sea heat fluxes for the global ice free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539CrossRefGoogle Scholar
  86. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyze Air-sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project technical report OA-2008-01, Woods HoleGoogle Scholar
  87. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Atmospheric, Oceanic and Atmospheric Sciences, College of ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Joint Center for Earth Systems TechnologyUniversity of MarylandBaltimoreUSA
  3. 3.Code 612.0, Mesoscale Atmospheric Processes LaboratoryNASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations