Advertisement

Future Climate Projections

  • Silvio GualdiEmail author
  • Samuel Somot
  • Wilhelm May
  • Sergio Castellari
  • Michel Déqué
  • Mario Adani
  • Vincenzo Artale
  • Alessio Bellucci
  • Joseph S. Breitgand
  • Adriana Carillo
  • Richard Cornes
  • Alessandro Dell’Aquila
  • Clotilde Dubois
  • Dimitrios Efthymiadis
  • Alberto Elizalde
  • Luis Gimeno
  • Clare M. Goodess
  • Ali Harzallah
  • Simon O. Krichak
  • Franz G. Kuglitsch
  • Gregor C. Leckebusch
  • Blandine L’Hévéder
  • Laurent Li
  • Piero Lionello
  • Jürg Luterbacher
  • Annarita Mariotti
  • Antonio Navarra
  • Raquel Nieto
  • Katrin M. Nissen
  • Paolo Oddo
  • Paolo Ruti
  • Antonella Sanna
  • Gianmaria Sannino
  • Enrico Scoccimarro
  • Florence Sevault
  • Maria Vittoria Struglia
  • Andrea Toreti
  • Uwe Ulbrich
  • Elena Xoplaki
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 50)

Abstract

In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.

The CIRCE models have been integrated from 1951 to 2050, with initial conditions obtained from a long spin-up run of the coupled systems. The simulations have been performed using observed radiative forcing (solar constant, greenhouse gases concentration and aerosol distribution) during the first half of the simulation period and the IPCC SRES A1B scenario during the second half (2001–2050).

The projections indicate that remarkable changes in the Mediterranean region climate might occur already in the next few decades. A substantial warming (about 1.5°C in winter and almost 2°C in summer) and a significant decrease of precipitation (about 5%) might affect the region in the 2021–2050 period compared to the reference period (1961–1990), in an A1B emission scenario. However, locally the changes might be even larger. In the same period, the projected surface net heat loss decreases, leading to a weaker cooling of the Mediterranean Sea by the atmosphere, whereas the water budget appears to increase, leading the basin to loose more water through its surface than in the past. The climate change projections obtained from the CIRCE models are overall consistent with the findings obtained in previous scenario simulations, such as PRUDENCE, ENSEMBLES and CMIP3. This agreement suggests that the results obtained from the climate projections are robust to substantial changes in the configuration of the models used to make the simulations.

Finally, the CIRCE models produce a 2021–2050 mean steric sea-level rise that ranges between +6.6 cm and +11.6 cm, with respect to the period of reference. Within the CIRCE project the results obtained from these models have been used to investigate the climate of the Mediterranean region and its possible response to radiative forcing. Furthermore, the data have been made available for climate change impact studies that are included in the Regional Assessment of Climate Change in the Mediterranean that has been prepared in the context of the CIRCE project.

Keywords

Climate change projections Water and heat budget Sea-level change Extreme events Uncertainty 

References

  1. Alioua M, Harzallah A (2008) Nesting of a numerical model of water circulation along the Tunisia coasts in a numerical model of the Mediterranean Sea. Bull Inst Natn Scien Tech Mer de Salammbô 35 (in French, available at ali.harzallah@instm.rnrt.tn)Google Scholar
  2. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29. doi: 10.1029/2001GL013554
  3. Annan JD, Hargreaves JC (2010) Reliability of the CMIP3 ensemble. Geophys Res Lett 37:L02703CrossRefGoogle Scholar
  4. Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti P, Sannino G, Struglia MV, Giorgi F, Bi X, Pal J, Rauscher S (2009) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present-climate simulation. Clim Dyn. doi: 10.1007/s00382-009-0691-8
  5. Bengtsson L, Hodges KI, Roeckner E (2007) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  6. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnæs K, Holt T, Jylhä K, Koffi B, Palutikoff J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  7. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability over the last 40 years: focus on the EMT. JGR-Ocean. doi: 10.1029/2009JC005850
  8. Calafat FM, Gomis D, Marcos M (2009) Comparison of Mediterranean sea level fields for the period 1961–2000 as given by a data reconstruction and a 3D model. Glob Planet Change 68:175–184CrossRefGoogle Scholar
  9. Carril A, Gualdi S, Cherchi A, Navarra A (2008) Heatwaves in Europe: areas of homogeneous variability and links with the regional to large-scale atmospheric and SST anomalies. Clim Dyn 30:77–98CrossRefGoogle Scholar
  10. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. Appl Stat 53:405–425Google Scholar
  11. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:31–52CrossRefGoogle Scholar
  12. Christensen JH, Rummukainen M, Lenderink G (2009) Formulation of very-high-resolution regional climate model ensembles for Europe. In: van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, 160ppGoogle Scholar
  13. Connolley WM, Bracegirdle TJ (2007) An Antarctic assessment of IPCC AR4 coupled models. Geophys Res Lett 34. doi: 10.1029/2007gl031648
  14. Della Marta PM, Pinto JG (2009) Statistical uncertainty of changes in winter storms over north Atlantic and Europe in an ensemble of transient climate simulations. Geophys Res Lett 36:L14703. doi: 10.1029/2009GL038557 CrossRefGoogle Scholar
  15. Déqué M (2009) Temperature and precipitation probability density functions in ENSEMBLES regional scenarios. ENSEMBLES technical report 5. Available at Météo-France/CNRM, 42 av. Coriolis, 31057 Toulouse Cedex 01, France, 63 ppGoogle Scholar
  16. Déqué M, Somot S (2010) Weighted frequency distributions expressing modelling uncertainties in the ENSEMBLES regional climate experiments. Clim Res. doi: 10.3354/cr00866
  17. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Chang 81:53–70CrossRefGoogle Scholar
  18. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34. doi: 10.1029/2007GL030000
  19. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meteorol Soc 135:1538–1559CrossRefGoogle Scholar
  20. Dubois C, Somot S, Calmanti S, Carillo A, Deque M, Dell’Aquilla A, Elizalde A, Gualdi S, Jacob D, Lheveder B, Li L, Oddo P, Sannino G, Scoccimarro E, Sevault F (2012) Future projections of the surface heat and water budgets of the Mediterranean sea in an ensemble of coupled atmosphere-ocean regional climate models. Clim Dyn 39:1859–1884. doi: 10.1007/s00382-011-1261-4 Google Scholar
  21. Efthymiadis D, Goodess CM, Jones PD (2011) Trends in Mediterranean gridded temperature extremes and largescale circulation influences. Nat Hazard Earth Syst Sci 11:1–16. doi: 10.5194/nhess-11-1-2011 CrossRefGoogle Scholar
  22. Fischer E, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci. doi: 10.1007/s00382-010-0780-8
  23. Furrer R, Knutti R, Sain SR, Nychka DW, Meehl GA (2007) Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys Res Lett 34:L06711CrossRefGoogle Scholar
  24. Giannakopoulos C, LeSeager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Glob Planet Change 68:209–224CrossRefGoogle Scholar
  25. Gimeno L, Trigo RM, Ribera P, García JA (2007) Editorial: special issue on cut-off low systems (COL). Meteorol Atmos Phys 96. doi: 10.1007/s00703-006-0216-5
  26. Giorgi F (2006) Climate change Hot-spots. Geophys Res Lett 33:L08707CrossRefGoogle Scholar
  27. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  28. Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood ERA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  29. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Change 57:27–42CrossRefGoogle Scholar
  30. Hertig E, Jacobeit J (2008a) Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int J Climatol 28:1025–1045CrossRefGoogle Scholar
  31. Hertig E, Jacobeit J (2008b) Downscaling future climate change: temperature scenarios for the Mediterranean area. Spec Issue Glob Planet Change 63:127–131CrossRefGoogle Scholar
  32. Hertig E, Jacobeit J (2010a) Predictability of Mediterranean climate variables from oceanic variability. Part I: Sea surface temperature regimes. Clim Dyn. doi: DOI: 10.1007/s00382-010-0819-xGoogle Scholar
  33. Hertig E, Jacobeit J (2010b) Predictability of Mediterranean climate variables from oceanic variability. Part II: Statistical models of monthly precipitation and temperature in the Mediterranean area. Clim Dyn 36(5–6):825–843. doi: 10.1007/s00382-010-0821-3 Google Scholar
  34. Hertig E, Seubert S, Jacobeit J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazard Earth Syst Sci 10(2039–2050):2010Google Scholar
  35. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566CrossRefGoogle Scholar
  36. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001. The scientific basis. Cambridge University Press, Cambridge, p 881. http://www.cnrm.meteo.fr/gmgec/spip.php?rubrique31 or samuel.somot@meteo.fr
  37. IPCC (2005) Guidance notes for lead authors of the IPCC fourth assessment report on addressing uncertainties. http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf
  38. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996ppGoogle Scholar
  39. IPCC (2010) Meeting report of the Intergovernmental Panel on Climate Change expert meeting on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) IPCC working group I technical support unit, University of Bern, Bern, Switzerland, pp 117Google Scholar
  40. Jackson CS, Sen MK, Huerta G, Deng Y, Bowman KP (2008) Error reduction and convergence in climate prediction. J Clim 21(24):6698–6709CrossRefGoogle Scholar
  41. Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikalojewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  42. Kendon EJ, Rowell DP, Jones RG (2009) Mechanisms and reliability of future projected changes in daily precipitation. Clim Dyn 35. doi: 10.1007/s00382-009-0639-z
  43. Knutti R (2008) Should we believe model predictions of future climate change? Philos Trans R Soc A 366:4647–4664CrossRefGoogle Scholar
  44. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758CrossRefGoogle Scholar
  45. Leckebusch GC, Renggli D, Ulbrich U (2008) Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorol Z 17:575–587CrossRefGoogle Scholar
  46. Levitus S (1998) NODC World Ocean Atlas 1998 data, report: NOAACIRES. Clim Diag Cent Boulder, ColoradoGoogle Scholar
  47. Li L (2006) Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Clim Dyn 27:543–552CrossRefGoogle Scholar
  48. Lionello P, Elvini E, Nizzero A (2003) A procedure for estimating wind waves and storm-surges climate scenarios in a regional basin: the Adriatic Sea case. Clim Res 23:217–231CrossRefGoogle Scholar
  49. Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63(2–3):152–162CrossRefGoogle Scholar
  50. Lionello P, Gelati MB, Elvini E (2010) Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Phys Chem Earth. doi: 10.1016/j.pce.2010.04.001
  51. Marcos M, Tsimplis M (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113:C12028. doi: 10.1029/2008JC004820 CrossRefGoogle Scholar
  52. Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. J Geophys Res 114:C01007. doi: 10.1029/2008JC004912 CrossRefGoogle Scholar
  53. Mariotti A, Arkin P (2007) The North Atlantic oscillation and oceanic precipitation variability. Clim Dyn 28:35–51CrossRefGoogle Scholar
  54. Mariotti A et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):044001CrossRefGoogle Scholar
  55. May W (2008) Climatic changes associated with a global 2°C-stabilization scenario simulated by the ECHAM5/MPI-OM coupled climate model. Clim Dyn 31:283–313CrossRefGoogle Scholar
  56. MEDAR Group (2002) MEDATLAS/2002 database. Mediterranean and Black Sea database of temperature salinity and bio-chemical parameters. Climatological Atlas. IFREMER Edition (4 Cdroms)Google Scholar
  57. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KA (2007a) The WCRP CMIP3 multimodel dataset – a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  58. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007b) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  59. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  60. Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans R Soc A 365(1857):1993–2028CrossRefGoogle Scholar
  61. Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Aust Meteorol Mag 39:155–166Google Scholar
  62. Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios. Cambridge University Press, 599 ppGoogle Scholar
  63. Nieto R, Gimeno L, de la Torre L, Ribera P, Gallego D, García-Herrera R, García JA, Nuñez M, Redaño A, Lorente J (2005) Climatological features of cut-off low systems in the Northern Hemisphere. J Clim 18:2805–2823CrossRefGoogle Scholar
  64. Nieto R, Sprenger M, Wernil H, Trigo R, Gimeno L (2008) Identification and climatology of cutoffs lows near the tropopause. Ann N Y Acad Sci 1146:256–290CrossRefGoogle Scholar
  65. Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics and links to large-scale patterns. Nat Hazard Earth Syst Sci 10:1379–1391CrossRefGoogle Scholar
  66. Oddo P, Adani M, Pinardi N, Fratianni C, Tonani M, Pettenuzzo D (2009) A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci 5:461–473CrossRefGoogle Scholar
  67. Palmén E, Newton CW (1969) Atmospheric circulation systems: their structure and physical interpretation. Academic, New York, p 603Google Scholar
  68. Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Doblas-Reyes FJ, Feddersen H, Graham R, Gualdi S, Guérémy JF, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres JM, Thomson MC (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872CrossRefGoogle Scholar
  69. Pettenuzzo D, Large W, Pinardi N (2010) On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J Geophy Res 115:C06022. doi: 10.1029/2009JC005631 CrossRefGoogle Scholar
  70. Pinto JG, Spangehl T, Ulbrich U, Speth P (2006) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Zeitschrift 14:823–838CrossRefGoogle Scholar
  71. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 – Part 1. MPI Report 349:127 ppGoogle Scholar
  72. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblüh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  73. Russell GL (2007) Step-mountain technique applied to an atmospheric C-grid model, or how to improve precipitation near mountains. Mon Weather Rev 135:4060–4076CrossRefGoogle Scholar
  74. Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of Regional Climate Models. Geophys Res Lett 36:L21401. doi: 10.1029/2009GL040120 CrossRefGoogle Scholar
  75. Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of the Mediterranean Sea Water and Heat budgets as simulated by an ensemble of high resolution Regional Climate Models. Clim Dyn. doi: 10.1007/s00382-011-1012-6
  76. Sannino G, Bargagli A, Artale V (2004) Numerical modeling of the semidiurnal tidal exchange through the strait of Gibraltar. J Geophys Res 109:C05011. doi: 10.1029/2003JC002057 CrossRefGoogle Scholar
  77. Sannino G, Carillo A, Artale V (2007) Three-layer view of transports and hydraulics in the strait of gibraltar: a three-dimensional model study. J Geophys Res 112:C03010. doi: 10.1029/2006JC003717 CrossRefGoogle Scholar
  78. Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009a) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the strait of Gibraltar. Ocean Model 30:56–72CrossRefGoogle Scholar
  79. Sannino G, Pratt L, Carillo A (2009b) Hydraulic criticality of the exchange flow through the strait of Gibraltar. J Phys Oceanogr 39:2779–2799CrossRefGoogle Scholar
  80. Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW, Wigley TML, Mears C, Wentz FJ, Bruggemann W, Gillett NP, Klein SA, Solomon S, Stott PA, Wehner MF (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci USA 106:14778–14783CrossRefGoogle Scholar
  81. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710CrossRefGoogle Scholar
  82. Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide. Note de centre n°107. Groupe de Météorologie de Grande Echelle et Climat. CNRM. mai 2009Google Scholar
  83. Smith LA (2002) What might we learn from climate forecasts? Proc Natl Acad Sci USA 99:2487–2492CrossRefGoogle Scholar
  84. Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104(485):97–116CrossRefGoogle Scholar
  85. Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27:851–879. doi: :10.1007/s00382-006-0167-z CrossRefGoogle Scholar
  86. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2–3):112–126. doi: 10.1016/j.gloplacha.2007.10.003 CrossRefGoogle Scholar
  87. Somot S, Sevaut F, Déqué M (2009) Design and first simulation with a tri-coupled AORCM dedicated to the Mediterranean study. Research activities in atmospheric and oceanic modelling. CAS/JSC working group on numerical experimentation. Report no 39. Available at http://collaboration.cmc.ec.gc.ca/science/wgne/index.html
  88. Soto-Navarro J, Criado-Aldeanueva F, García-Lafuente J, Sánchez-Román A (2010) Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. J Geophys Res 115:C10023. doi: 10.1029/2010JC006302 CrossRefGoogle Scholar
  89. Stanev EV, Le Traon P-Y, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcings: analysis of altimeter and surface data for the Black Sea. J Geophys Res 105(C7):17203–17216CrossRefGoogle Scholar
  90. Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspects of the observed variability. J Clim 17:4740–4751CrossRefGoogle Scholar
  91. Tebaldi C, Knutti R (2007) The use of the multimodel ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2053–2075CrossRefGoogle Scholar
  92. Tebaldi C, Smith RW, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Clim 18:1524–1540CrossRefGoogle Scholar
  93. Thorpe R, Bigg G (2000) Modelling the sensitivity of the Mediterranean outflow to anthropogenically forced climate change. Clim Dyn 16:355–368CrossRefGoogle Scholar
  94. Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J (2011) A novel approach for the detection of inhomogeneities affecting climate time series. J Appl Meteorol Clim 51(2):317–326, revisedCrossRefGoogle Scholar
  95. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143CrossRefGoogle Scholar
  96. Valcke S (2006) OASIS3 user guide (prism_2-5). CERFACS technical report TR/CMGC/06/73, PRISM report no 3 Toulouse, France, 60 ppGoogle Scholar
  97. van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, 160ppGoogle Scholar
  98. Waugh DW, Eyring V (2008) Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos Chem Phys 8:5699–5713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Silvio Gualdi
    • 1
    • 2
    Email author
  • Samuel Somot
    • 3
  • Wilhelm May
    • 4
  • Sergio Castellari
    • 1
    • 2
  • Michel Déqué
    • 3
  • Mario Adani
    • 1
  • Vincenzo Artale
    • 5
  • Alessio Bellucci
    • 2
  • Joseph S. Breitgand
    • 6
  • Adriana Carillo
    • 5
  • Richard Cornes
    • 7
  • Alessandro Dell’Aquila
    • 5
  • Clotilde Dubois
    • 3
  • Dimitrios Efthymiadis
    • 7
    • 17
  • Alberto Elizalde
    • 8
  • Luis Gimeno
    • 9
  • Clare M. Goodess
    • 7
  • Ali Harzallah
    • 10
  • Simon O. Krichak
    • 6
  • Franz G. Kuglitsch
    • 11
  • Gregor C. Leckebusch
    • 12
    • 16
  • Blandine L’Hévéder
    • 13
  • Laurent Li
    • 13
  • Piero Lionello
    • 14
    • 2
  • Jürg Luterbacher
    • 15
  • Annarita Mariotti
    • 5
    • 18
  • Antonio Navarra
    • 1
    • 2
  • Raquel Nieto
    • 9
  • Katrin M. Nissen
    • 16
  • Paolo Oddo
    • 1
  • Paolo Ruti
    • 5
  • Antonella Sanna
    • 2
  • Gianmaria Sannino
    • 5
  • Enrico Scoccimarro
    • 1
  • Florence Sevault
    • 3
  • Maria Vittoria Struglia
    • 5
  • Andrea Toreti
    • 11
    • 15
  • Uwe Ulbrich
    • 16
  • Elena Xoplaki
    • 11
    • 15
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly
  2. 2.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)BolognaItaly
  3. 3.Météo FranceToulouseFrance
  4. 4.Danish Meteorological Institute (DMI)CopenhagenDenmark
  5. 5.Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEARomeItaly
  6. 6.Department of Geophysics and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTAUIsrael
  7. 7.Climatic Research Unit, School of Environmental SciencesUniversity of East Anglia (UEA)NorwichUK
  8. 8.Max-Plank Institute for Meteorology (MPI)HamburgGermany
  9. 9.EPhysLabUniversity of VigoOurenseSpain
  10. 10.National Institute of Marine Sciences and Technologies (INSTM)SalammboTunisia
  11. 11.Institute of Geography, Climatology and Meteorology and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  12. 12.School of Geography, Earth and Environmental SciencesUniversity of BirminghamEdgbaston, BirminghamUK
  13. 13.Laboratoire de Météorologie Dynamique, CNRS-LMDParisFrance
  14. 14.Department of Material ScienceUniversity of LecceLecceItaly
  15. 15.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus-Liebig University of GiessenGiessenGermany
  16. 16.Institut für MeteorologieFreie Universität Berlin, FU- BerlinBerlinGermany
  17. 17.Centre for Climate Change, Geography DepartmentUniversity Rovira i Virgili (URV)TortosaSpain
  18. 18.Earth System Science Interdisciplinary CenterUniversity of MarylandBaltimoreUSA

Personalised recommendations