Advertisement

Human Embryonic Stem Cells

  • Mikael C. O. EnglundEmail author
  • Peter Sartipy
  • Johan Hyllner
Chapter

Abstract

Stem cells can be isolated from a variety of sources and they are typically classified based on their tissue of origin. Embryonic stem cells are, as the name indicates, derived from the inner cell mass of pre-implantation stage blastocysts at day 5–7 post fertilisation. These cells possess qualities such as pluripotency and a seemingly limitless capacity to proliferate in vitro in their undifferentiated state. Embryonic stem cells were first derived from mouse embryos in the early 1980s but have now been derived from a number of different species including rat, rabbit, sheep, horse and human. This chapter focuses on human embryonic stem cells and describes techniques used for their derivation and culture. In addition, the basic properties of these cells are illustrated, including some examples of their capacity to differentiate to various precursors and functional cell types. Finally, some areas of applications for these cells are discussed with emphasis on their possible future use in regenerative medicine.

Keywords

Feeder Cell Good Manufacturing Practice Human Pluripotent Stem Cell Stem Cell Banking Cell Culture Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Miss Claire Balfour for providing images for the figures.

References

  1. 2001/20/EC, E.D (2001) EU Directive 2001/20/ECGoogle Scholar
  2. 2005/28/EC, E.D (2005) EU Directive 2005/28/ECGoogle Scholar
  3. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816PubMedCrossRefGoogle Scholar
  4. Advanced Cell Technology clinical trials. http://www.advancedcell.com/patients/clinical-trial-information/
  5. Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 26:1117–1127PubMedCrossRefGoogle Scholar
  6. Alper J (2009) Geron gets green light for human trial of ES cell-derived product. Nat Biotechnol 27:213–214PubMedCrossRefGoogle Scholar
  7. Andrews PD, Becroft M, Aspegren A, Gilmour J, James MJ, McRae S, Kime R, Allcock RW, Abraham A, Jiang Z, Strehl R, Mountford JC, Milligan G, Houslay MD, Adams DR, Frearson JA (2010) High-content screening of feeder-free human embryonic stem cells to identify pro-survival small molecules. Biochem J 432(1):21–33PubMedCrossRefGoogle Scholar
  8. Baharvand H, Hashemi SM, Shahsavani M (2008) Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation 76:465–477PubMedCrossRefGoogle Scholar
  9. Barde Y (2009) Caution urged in trial of stem cells to treat spinal-cord injury. Nature 458:29PubMedCrossRefGoogle Scholar
  10. Beqqali A, Kloots J, Ward-van Oostwaard D, Mummery C, Passier R (2006) Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24:1956–1967PubMedCrossRefGoogle Scholar
  11. Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117PubMedGoogle Scholar
  12. Borowiak M, Melton DA (2009) How to make beta cells? Curr Opin Cell Biol, Dec; 21(6):727–732CrossRefGoogle Scholar
  13. Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K et al (2004) Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 22:707–716PubMedCrossRefGoogle Scholar
  14. Brett S, Livie M, Thomas G, McConnell A, Rajkhowa M (2009) Report on the donation of supernumerary embryos from fresh IVF and ICSI treatment cycles for human stem cell research. Hum Fertil (Camb) 12:34–39CrossRefGoogle Scholar
  15. Cai L, Johnstone BH, Cook TG, Liang Z, Traktuev D, Cornetta K, Ingram DA, Rosen ED, March KL (2007) Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells 25:3234–3243PubMedCrossRefGoogle Scholar
  16. Caisander G, Park H, Frej K, Lindqvist J, Bergh C, Lundin K, Hanson C (2006) Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture. Chromosome Res 14:131–137PubMedCrossRefGoogle Scholar
  17. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893PubMedCrossRefGoogle Scholar
  18. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76PubMedCrossRefGoogle Scholar
  19. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655PubMedCrossRefGoogle Scholar
  20. Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-Gerald C, Zhang K, Melton DA et al (2009) Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4:103–106PubMedCrossRefGoogle Scholar
  21. Civin CI, Rao MS (2006) How many human embryonic stem cell lines are sufficient? A U.S. perspective. Stem Cells 24:800–803PubMedCrossRefGoogle Scholar
  22. Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, Hentze H, Dunn NR, Zweigerdt R, Chua F et al (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494CrossRefGoogle Scholar
  23. Crook JM, Hei D, Stacey G (2010) The International Stem Cell Banking Initiative (ISCBI): raising standards to bank on. Vitro Cell Dev Biol Anim 46(3–4):169–172, Epub 3 Mar 2010. ReviewCrossRefGoogle Scholar
  24. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRefGoogle Scholar
  25. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:544–548PubMedCrossRefGoogle Scholar
  26. Dalgetty DM, Medine CN, Iredale JP, Hay DC (2009) Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 297:G241–G248PubMedCrossRefGoogle Scholar
  27. Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, Studer L (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2:602–612PubMedCrossRefGoogle Scholar
  28. Dokras A, Sargent IL, Barlow DH (1993) Human blastocyst grading: an indicator of developmental potential? Hum Reprod 8:2119–2127PubMedGoogle Scholar
  29. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54PubMedCrossRefGoogle Scholar
  30. Ellerstrom C, Strehl R, Moya K, Andersson K, Bergh C, Lundin K, Hyllner J, Semb H (2006) Derivation of a xeno-free human embryonic stem cell line. Stem Cells 24:2170–2176PubMedCrossRefGoogle Scholar
  31. Ellerstrom C, Strehl R, Noaksson K, Hyllner J, Semb H (2007) Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25:1690–1696PubMedCrossRefGoogle Scholar
  32. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  33. Feki A, Bosman A, Dubuisson JB, Irion O, Dahoun S, Pelte MF, Hovatta O, Jaconi ME (2008) Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo. Swiss Med Wkly 138:540–550PubMedGoogle Scholar
  34. Gavrilov S, Prosser RW, Khalid I, MacDonald J, Sauer MV, Landry DW, Papaioannou VE (2009) Non-viable human embryos as a source of viable cells for embryonic stem cell derivation. Reprod Biomed Online 18:301–308PubMedCrossRefGoogle Scholar
  35. Geens M, Mateizel I, Sermon K, De Rycke M, Spits C, Cauffman G, Devroey P, Tournaye H, Liebaers I, Van de Velde H (2009) Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 24:2709–2717PubMedCrossRefGoogle Scholar
  36. Geron (2009) Geron receives FDA clearance to begin world’s first human clinical trial of embryonic stem cell-based therapy. Press releaseGoogle Scholar
  37. Guguen-Guillouzo C, Corlu A, Guillouzo A (2010) Stem cell-derived hepatocytes and their use in toxicology. Toxicology 270(1):3–9, Epub 6 Oct 2009PubMedCrossRefGoogle Scholar
  38. Heins N, Englund MC, Sjoblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22:367–376PubMedCrossRefGoogle Scholar
  39. Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M et al (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25:197–202PubMedCrossRefGoogle Scholar
  40. Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A, Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, Ogilvie C, Braude P (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14(1):122–128, Epub 27 Oct 2011PubMedCrossRefGoogle Scholar
  41. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95PubMedGoogle Scholar
  42. Jensen J, Hyllner J, Bjorquist P (2009) Human embryonic stem cell technologies and drug discovery. J Cell Physiol 219:513–519PubMedCrossRefGoogle Scholar
  43. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414PubMedGoogle Scholar
  44. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200PubMedCrossRefGoogle Scholar
  45. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485PubMedCrossRefGoogle Scholar
  46. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRefGoogle Scholar
  47. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284PubMedCrossRefGoogle Scholar
  48. Lerou PH, Yabuuchi A, Huo H, Miller JD, Boyer LF, Schlaeger TM, Daley GQ (2008a) Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat Protoc 3:923–933PubMedCrossRefGoogle Scholar
  49. Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008b) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26:212–214PubMedCrossRefGoogle Scholar
  50. Li X, Krawetz R, Liu S, Meng G, Rancourt DE (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24:580–589PubMedCrossRefGoogle Scholar
  51. Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2(9):1187–1203PubMedCrossRefGoogle Scholar
  52. Loser P, Schirm J, Guhr A, Wobus AM, Kurtz A (2010) Human embryonic stem cell lines and their use in international research. Stem Cells 28:240–246PubMedGoogle Scholar
  53. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187PubMedCrossRefGoogle Scholar
  54. Lui KO, Waldmann H, Fairchild PJ (2009) Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther 4(1):70–80PubMedCrossRefGoogle Scholar
  55. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedCrossRefGoogle Scholar
  56. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232PubMedCrossRefGoogle Scholar
  57. Medine CN, Lucendo-Villarin B, Zhou W, West CC, Hay DC (2011) Robust generation of hepatocyte-like cells from human embryonic stem cell populations. J Vis Exp 56:e2969. doi: 10.3791/2969 PubMedGoogle Scholar
  58. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642PubMedCrossRefGoogle Scholar
  59. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740PubMedCrossRefGoogle Scholar
  60. Murdoch A, Braude P, Courtney A, Brison D, Hunt C, Lawford-Davies J, Moore H, Stacey G, Sethe S, for the Procurement Working Group of the National Clinical hESC Forum (2012) The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev 8(1):91–99PubMedCrossRefGoogle Scholar
  61. Nakajima F, Tokunaga K, Nakatsuji N (2007) Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in cell transplantation therapy. Stem Cells 25:983–985PubMedCrossRefGoogle Scholar
  62. Nasonkin IO, Koliatsos VE (2006) Nonhuman sialic acid Neu5Gc is very low in human embryonic stem cell-derived neural precursors differentiated with B27/N2 and noggin: implications for transplantation. Exp Neurol 201:525–529PubMedCrossRefGoogle Scholar
  63. Parsons XH, Teng YD, Parsons JF, Snyder EY, Smotrich DB, Moore DA (2011) Efficient derivation of human cardiac precursors and cardiomyocytes from pluripotent human embryonic stem cells with small molecule induction. J Vis Exp 57:e3274. doi: 10.3791/3274 PubMedGoogle Scholar
  64. Passier R, Mummery C (2005) Cardiomyocyte differentiation from embryonic and adult stem cells. Curr Opin Biotechnol 16:498–502PubMedCrossRefGoogle Scholar
  65. Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP (2005) A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics 5(4):978–989PubMedCrossRefGoogle Scholar
  66. Rajala K, Hakala H, Panula S, Aivio S, Pihlajamaki H, Suuronen R, Hovatta O, Skottman H (2007) Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod 22:1231–1238PubMedCrossRefGoogle Scholar
  67. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12:1–11PubMedCrossRefGoogle Scholar
  68. Rho JY, Yu K, Han JS, Chae JI, Koo DB, Yoon HS, Moon SY, Lee KK, Han YM (2006) Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum Reprod 21:405–412PubMedCrossRefGoogle Scholar
  69. Richards M, Fong CY, Tan S, Chan WK, Bongso A (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789PubMedCrossRefGoogle Scholar
  70. Sjogren A, Hardarson T, Andersson K, Caisander G, Lundquist M, Wikland M, Semb H, Hamberger L (2004) Human blastocysts for the development of embryonic stem cells. Reprod Biomed Online 9:326–329PubMedCrossRefGoogle Scholar
  71. Sjogren-Jansson E, Zetterstrom M, Moya K, Lindqvist J, Strehl R, Eriksson PS (2005) Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn 233:1304–1314PubMedCrossRefGoogle Scholar
  72. Snykers S, De Kock J, Rogiers V, Vanhaecke T (2009) In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells 27:577–605PubMedCrossRefGoogle Scholar
  73. Stephenson EL, Braude PR, Mason C (2007) International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen Med 2:349–362PubMedCrossRefGoogle Scholar
  74. Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y (2004) Morula-derived human embryonic stem cells. Reprod Biomed Online 9:623–629PubMedCrossRefGoogle Scholar
  75. Suemori H, Yasuchika K, Hasegawa K, Fujioka T, Tsuneyoshi N, Nakatsuji N (2006) Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem Biophys Res Commun 345:926–932PubMedCrossRefGoogle Scholar
  76. Synnergren J, Akesson K, Dahlenborg K, Vidarsson H, Ameen C, Steel D, Lindahl A, Olsson B, Sartipy P (2008) Molecular signature of cardiomyocyte clusters derived from human embryonic stem cells. Stem Cells 26:1831–1840PubMedCrossRefGoogle Scholar
  77. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025PubMedCrossRefGoogle Scholar
  78. Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644PubMedCrossRefGoogle Scholar
  79. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848PubMedCrossRefGoogle Scholar
  80. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259PubMedCrossRefGoogle Scholar
  81. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  82. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53PubMedCrossRefGoogle Scholar
  83. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6(8):e23657, Epub 18 Aug 2011PubMedCrossRefGoogle Scholar
  84. van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, den Ouden K, Ward-van Oostwaard D, Korving J, Tertoolen LG et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:9–24PubMedCrossRefGoogle Scholar
  85. van Laake LW, Passier R, den Ouden K, Schreurs C, Monshouwer-Kloots J, Ward-van Oostwaard D, van Echteld CJ, Doevendans PA, Mummery CL (2009) Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res 3:106–112PubMedCrossRefGoogle Scholar
  86. van Laake LW, van Donselaar EG, Monshouwer-Kloots J, Schreurs C, Passier R, Humbel BM, Doevendans PA, Sonnenberg A, Verkleij AJ, Mummery CL (2010) Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cell Mol Life Sci 67(2):277–290, Epub 22 Oct 2009PubMedCrossRefGoogle Scholar
  87. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686PubMedCrossRefGoogle Scholar
  88. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264PubMedCrossRefGoogle Scholar
  89. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM et al (2008) Human cardiovascular progenitor cells develop from a KDR+  embryonic-stem-cell-derived population. Nature 453:524–528PubMedCrossRefGoogle Scholar
  90. Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, Stojkovic M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mikael C. O. Englund
    • 1
    Email author
  • Peter Sartipy
    • 1
  • Johan Hyllner
    • 1
    • 2
  1. 1.Cellectis stem cellsGöteborgSweden
  2. 2.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations