Preclinical Animal Models for Segmental Bone Defect Research and Tissue Engineering

  • Johannes C. Reichert
  • Arne Berner
  • Siamak Saifzadeh
  • Dietmar W. Hutmacher
Chapter

Abstract

Commonly applied therapies to achieve bone reconstruction or function are restricted to the transplantation of autografts and allografts, or the implantation of metal devices or ceramic-based implants. Bone grafts generally possess osteoconductive and osteoinductive properties. They are, however, limited in access and availability and harvest is associated with donor site morbidity, hemorrhage, risk of infection, insufficient transplant integration, and graft devitalisation. As a result, recent research focuses on the development of alternative therapeutic concepts. Available literature indicates that bone regeneration has become a focus area in the field of tissue engineering. Hence, a considerable number of research groups and commercial entities work on the development of tissue engineered constructs to aid bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and cost-intensive. Approval requires both comprehensive in vitro and in vivo studies necessitating the utilisation of large preclinical animal models. Consequently, to allow comparison between different studies and their outcomes, it is essential to standardize animal models, fixation devices, surgical procedures and methods of taking measurements to produce reliable data pools as a base for further research directions. The following chapter reviews animal models of the weight-bearing lower extremity utilized in the field, which include representations of fracture-healing, segmental bone defects, and fracture non-unions.

Keywords

Bone Defect Fracture Healing Platelet Rich Plasma Intramedullary Nail Segmental Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aerssens J, Boonen S, Lowet G et al (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670PubMedCrossRefGoogle Scholar
  2. Anderson ML, Dhert WJ, de Bruijn JD et al (1999) Critical size defect in the goat’s os ilium: a model to evaluate bone grafts and substitutes. Clin Orthop Relat Res 364:231–239PubMedCrossRefGoogle Scholar
  3. Augat P, Claes L (2008) Increased cortical remodeling after osteotomy causes posttraumatic osteopenia. Bone 43:539–543PubMedCrossRefGoogle Scholar
  4. Augat P, Merk J, Genant HK et al (1997) Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int 60:194–199PubMedCrossRefGoogle Scholar
  5. Augat P, Margevicius K, Simon J et al (1998) Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res 16:475–481PubMedCrossRefGoogle Scholar
  6. Augat P, Burger J, Schorlemmer S et al (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21:1011–1017PubMedCrossRefGoogle Scholar
  7. Bail HJ, Kolbeck S, Krummrey G et al (2002) Systemic application of growth hormone for enhancement of secondary and intramembranous fracture healing. Horm Res 58(suppl 3):39–42PubMedCrossRefGoogle Scholar
  8. Bloebaum RD, Ota DT, Skedros JG et al (1993) Comparison of human and canine external femoral morphologies in the context of total hip replacement. J Biomed Mater Res 27:1149–1159PubMedCrossRefGoogle Scholar
  9. Bloemers FW, Blokhuis TJ, Patka P et al (2003) Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater 66:526–531PubMedCrossRefGoogle Scholar
  10. Blokhuis TJ, Wippermann BW, den Boer FC et al (2000) Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect. J Biomed Mater Res 51:369–375PubMedCrossRefGoogle Scholar
  11. Blokhuis TJ, den Boer FC, Bramer JA et al (2001) Biomechanical and histological aspects of fracture healing, stimulated with osteogenic protein-1. Biomaterials 22:725–730PubMedCrossRefGoogle Scholar
  12. Brodke D, Pedrozo HA, Kapur TA et al (2006) Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res 24:857–866PubMedCrossRefGoogle Scholar
  13. Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62PubMedGoogle Scholar
  14. Bullens PH, Hannink G, Verdonschot N et al (2010) No effect of dynamic loading on bone graft healing in femoral segmental defect reconstructions in the goat. Injury 41:1284–1291PubMedCrossRefGoogle Scholar
  15. Buser D, Schenk RK, Steinemann S et al (1991) Influence of surface characteristics on bone integration of titanium implants: a histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902PubMedCrossRefGoogle Scholar
  16. Cacchioli A, Spaggiari B, Ravanetti F et al (2006) The critical sized bone defect: morphological study of bone healing. Ann Fac Med Vet di Parma 26:97–110Google Scholar
  17. Chapman MW, Bucholz R, Cornell C (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am 79:495–502PubMedGoogle Scholar
  18. Cierny G III, Zorn KE (1994) Segmental tibial defects: comparing conventional and Ilizarov methodologies. Clin Orthop Relat Res 301:118–123PubMedGoogle Scholar
  19. Claes LE, Wilke HJ, Augat P et al (1995) Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 10:227–234CrossRefGoogle Scholar
  20. Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:S132–S147PubMedCrossRefGoogle Scholar
  21. Claes L, Laule J, Wenger K et al (2000) The influence of stiffness of the fixator on maturation of callus after segmental transport. J Bone Joint Surg Br 82:142–148PubMedCrossRefGoogle Scholar
  22. Claes L, Eckert-Hubner K, Augat P (2002) The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20:1099–1105PubMedCrossRefGoogle Scholar
  23. Claes L, Ruter A, Mayr E (2005) Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res 430:189–194PubMedCrossRefGoogle Scholar
  24. Claes L, Augat P, Schorlemmer S et al (2008) Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. J Orthop Res 26:772–777PubMedCrossRefGoogle Scholar
  25. Clements JR, Carpenter BB, Pourciau JK (2008) Treating segmental bone defects: a new technique. J Foot Ankle Surg 47:350–356PubMedCrossRefGoogle Scholar
  26. Dai KR, Xu XL, Tang TT et al (2005) Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif Tissue Int 77:55–61PubMedCrossRefGoogle Scholar
  27. de Kleer V (2006) Development of bone. In: Sumner-Smith G (ed) Bone in clinical orthopedics. W.B. Saunders Co, Philadelphia, pp 1–80Google Scholar
  28. de Pablos J, Barrios C, Alfaro C et al (1994) Large experimental segmental bone defects treated by bone transportation with monolateral external distractors. Clin Orthop Relat Res 298:259–265PubMedGoogle Scholar
  29. DeCoster TA, Gehlert RJ, Mikola EA et al (2004) Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 12:28–38PubMedGoogle Scholar
  30. Dell PC, Burchardt H, Glowczewskie FP Jr (1985) A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 67:105–112PubMedGoogle Scholar
  31. den Boer FC, Patka P, Bakker FC et al (1999) New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy x-ray absorptiometry. J Orthop Res 17:654–660CrossRefGoogle Scholar
  32. den Boer FC, Bramer JA, Blokhuis TJ et al (2002) Effect of recombinant human osteogenic protein-1 on the healing of a freshly closed diaphyseal fracture. Bone 31:158–164CrossRefGoogle Scholar
  33. den Boer FC, Wippermann BW, Blokhuis TJ et al (2003) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthop Res 21:521–528CrossRefGoogle Scholar
  34. Di Bella C, Aldini NN, Lucarelli E et al (2010) Osteogenic protein-1 associated with mesenchymal stem cells promote bone allograft integration. Tissue Eng A 16:2967–2976CrossRefGoogle Scholar
  35. Edwards RB 3rd, Seeherman HJ, Bogdanske JJ et al (2004) Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg Am 86-A:1425–1438PubMedGoogle Scholar
  36. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16(Suppl 2):S129–138PubMedCrossRefGoogle Scholar
  37. Einhorn TA (1999) Clinically applied models of bone regeneration in tissue engineering research. Clin Orthop Relat Res 367:S59–S67PubMedCrossRefGoogle Scholar
  38. Einhorn TA, Lane JM, Burstein AH et al (1984) The healing of segmental bone defects induced by demineralized bone matrix: a radiographic and biomechanical study. J Bone Joint Surg Am 66:274–279PubMedGoogle Scholar
  39. Eitel F, Klapp F, Jacobson W et al (1981) Bone regeneration in animals and in man: a contribution to understanding the relative value of animal experiments to human pathophysiology. Arch Orthop Trauma Surg 99:59–64PubMedCrossRefGoogle Scholar
  40. Epari DR, Schell H, Bail HJ et al (2006) Instability prolongs the chondral phase during bone healing in sheep. Bone 38:864–870PubMedCrossRefGoogle Scholar
  41. Epari DR, Lienau J, Schell H et al (2008) Pressure, oxygen tension and temperature in the periosteal callus during bone healing-an in vivo study in sheep. Bone 43(4):734–739PubMedCrossRefGoogle Scholar
  42. Faria ML, Lu Y, Heaney K et al (2007) Recombinant human bone morphogenetic protein-2 in absorbable collagen sponge enhances bone healing of tibial osteotomies in dogs. Vet Surg 36:122–131PubMedCrossRefGoogle Scholar
  43. Field JR, McGee M, Wildenauer C et al (2009) The utilization of a synthetic bone void filler (JAX) in the repair of a femoral segmental defect. Vet Comp Orthop Traumatol 22:87–95PubMedGoogle Scholar
  44. Field JR, McGee M, Stanley R et al (2011) The efficacy of allogeneic mesenchymal precursor cells for the repair of an ovine tibial segmental defect. Vet Comp Orthop Traumatol 24:113–121PubMedCrossRefGoogle Scholar
  45. Gao TJ, Lindholm TS, Kommonen B et al (1996) Enhanced healing of segmental tibial defects in sheep by a composite bone substitute composed of tricalcium phosphate cylinder, bone morphogenetic protein, and type IV collagen. J Biomed Mater Res 32:505–512PubMedCrossRefGoogle Scholar
  46. Gao TJ, Lindholm TS, Kommonen B et al (1997) The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 21:194–200PubMedCrossRefGoogle Scholar
  47. Gazdag AR, Lane JM, Glaser D et al (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3:1–8PubMedGoogle Scholar
  48. Gerhart TN, Kirker-Head CA, Kriz MJ et al (1993) Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop Relat Res 293:317–326PubMedGoogle Scholar
  49. Gilbert JA, Dahners LE, Atkinson MA (1989) The effect of external fixation stiffness on early healing of transverse osteotomies. J Orthop Res 7:389–397PubMedCrossRefGoogle Scholar
  50. Gillett N, Brown SA, Dumbleton JH et al (1985) The use of short carbon fibre reinforced thermoplastic plates for fracture fixation. Biomaterials 6:113–121PubMedCrossRefGoogle Scholar
  51. Goldstrohm GL, Mears DC, Swartz WM (1984) The results of 39 fractures complicated by major segmental bone loss and/or leg length discrepancy. J Trauma 24:50–58PubMedCrossRefGoogle Scholar
  52. Gong JK, Arnold JS, Cohn SH (1964) The density of organic and volatile and non-volatile inorganic components of bone. Anat Rec 149:319–324PubMedCrossRefGoogle Scholar
  53. Goodship AE, Watkins PE, Rigby HS et al (1993) The role of fixator frame stiffness in the control of fracture healing: an experimental study. J Biomech 26:1027–1035PubMedCrossRefGoogle Scholar
  54. Gotterbarm T, Breusch SJ, Schneider U et al (2008) The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 42:71–82PubMedCrossRefGoogle Scholar
  55. Gray AC, White TO, Clutton E et al (2009) The stress response to bilateral femoral fractures: a comparison of primary intramedullary nailing and external fixation. J Orthop Trauma 23:90–97 (discussion 98–99)PubMedCrossRefGoogle Scholar
  56. Gugala Z, Gogolewski S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13:187–195PubMedCrossRefGoogle Scholar
  57. Gugala Z, Gogolewski S (2002) Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury 33(suppl 2):B71–B76PubMedCrossRefGoogle Scholar
  58. Gugala Z, Lindsey RW, Gogolewski S (2007) New approaches in the treatment of critical-size segmental defects in long bones. Macromol Symp 253:147–161CrossRefGoogle Scholar
  59. Hantes ME, Mavrodontidis AN, Zalavras CG et al (2004) Low-intensity transosseous ultrasound accelerates osteotomy healing in a sheep fracture model. J Bone Joint Surg Am 86-A:2275–2282PubMedGoogle Scholar
  60. Hara Y, Nakamura T, Fukuda H et al (2003) Changes of biomechanical characteristics of the bone in experimental tibial osteotomy model in the dog. J Vet Med Sci 65:103–107PubMedCrossRefGoogle Scholar
  61. Heitemeyer U, Claes L, Hierholzer G (1990) The significance of postoperative stability for osseous repair of a multiple fragment fracture. Animal experiment studies. Unfallchirurg 93:49–55PubMedGoogle Scholar
  62. Hente R, Cordey J, Rahn BA et al (1999) Fracture healing of the sheep tibia treated using a unilateral external fixator: comparison of static and dynamic fixation. Injury 30(suppl 1):A44–A51PubMedGoogle Scholar
  63. Hill PF, Watkins PE (2001) The prevention of experimental osteomyelitis in a model of gunshot fracture in the pig. Eur J Orthop Surg Traumatol 11:237–241CrossRefGoogle Scholar
  64. Huang J, Zhang L, Chu B et al (2011) Repair of bone defect in caprine tibia using a laminated scaffold with bone marrow stromal cells loaded poly (l-lactic acid)/beta-tricalcium phosphate. Artif Organs 35:49–57PubMedCrossRefGoogle Scholar
  65. Hupel TM, Weinberg JA, Aksenov SA et al (2001) Effect of unreamed, limited reamed, and standard reamed intramedullary nailing on cortical bone porosity and new bone formation. J Orthop Trauma 15:18–27PubMedCrossRefGoogle Scholar
  66. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II: the influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285PubMedGoogle Scholar
  67. Ilizarov GA, Gracheva VI (1971) Bloodless treatment of congenital pseudarthrosis of the crus with simultaneous elimination of shortening using dosed distraction. Ortop Travmatol Protez 32:42–46PubMedGoogle Scholar
  68. Itoh S, Kikuchi M, Takakuda K et al (2002) Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res 63:507–515PubMedCrossRefGoogle Scholar
  69. Jain R, Podworny N, Hupel TM et al (1999) Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. J Orthop Trauma 13:178–186PubMedCrossRefGoogle Scholar
  70. Jiang CC, Chiang H, Liao CJ et al (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25:1277–1290PubMedCrossRefGoogle Scholar
  71. Jockisch KA, Brown SA, Bauer TW et al (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26:133–146PubMedCrossRefGoogle Scholar
  72. Kettunen J, Makela A, Miettinen H et al (1999) Fixation of femoral shaft osteotomy with an intramedullary composite rod: an experimental study on dogs with a two-year follow-up. J Biomater Sci Polym Ed 10:33–45PubMedCrossRefGoogle Scholar
  73. Kilian O, Wenisch S, Alt V et al (2007) Effects of platelet factors on biodegradation and osteogenesis in metaphyseal defects filled with nanoparticular hydroxyapatite – an experimental study in minipigs. Growth Factors 25:191–201PubMedCrossRefGoogle Scholar
  74. Kirker-Head CA, Gerhart TN, Armstrong R et al (1998) Healing bone using recombinant human bone morphogenetic protein 2 and copolymer. Clin Orthop Relat Res 349:205–217PubMedCrossRefGoogle Scholar
  75. Klein C, Sprecher C, Rahn BA et al (2010) Unreamed or RIA reamed nailing: an experimental sheep study using comparative histological assessment of affected bone tissue in an acute fracture model. Injury 41(suppl 2):S32–S37PubMedCrossRefGoogle Scholar
  76. Kleinman PL, Zurakowski D, Strauss KJ et al (2008) Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. Radiology 247:381–390PubMedGoogle Scholar
  77. Knothe Tate ML, Ritzman TF, Schneider E et al (2007) Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am 89:307–316PubMedCrossRefGoogle Scholar
  78. Knothe Tate ML, Chang H, Moore SR et al (2011) Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model. PloS One 6:e28702PubMedCrossRefGoogle Scholar
  79. Kokubo S, Mochizuki M, Fukushima S et al (2004) Long-term stability of bone tissues induced by an osteoinductive biomaterial, recombinant human bone morphogenetic protein-2 and a biodegradable carrier. Biomaterials 25:1795–1803PubMedCrossRefGoogle Scholar
  80. Komaki H, Tanaka T, Chazono M et al (2006) Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 27:5118–5126PubMedCrossRefGoogle Scholar
  81. Kuttenberger JJ, Stubinger S, Waibel A et al (2008) Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg 26:129–136PubMedCrossRefGoogle Scholar
  82. Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3:49–57PubMedCrossRefGoogle Scholar
  83. Lian ZD, Chuanchang L, Wei et al (2009) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28:412–418Google Scholar
  84. Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714PubMedCrossRefGoogle Scholar
  85. Lindsey RW, Gugala Z, Milne E et al (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24:1438–1453PubMedCrossRefGoogle Scholar
  86. Liu G, Zhao L, Zhang W et al (2008) Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med 19:2367–2376PubMedCrossRefGoogle Scholar
  87. Liu X, Li X, Fan Y et al (2010) Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. Journal of biomedical materials research. Part B. J Biomed Mater Res B Appl Biomater 94:44–52PubMedGoogle Scholar
  88. Lu Y, Nemke B, Lorang DM et al (2009) Comparison of a new braid fixation system to an interlocking intramedullary nail for tibial osteotomy repair in an ovine model. Vet Surg 38:467–476PubMedCrossRefGoogle Scholar
  89. Macdonald W, Skirving AP, Scull ER (1988) A device for producing experimental fractures. Acta Orthop Scand 59:542–544PubMedCrossRefGoogle Scholar
  90. Maissen O, Eckhardt C, Gogolewski S et al (2006) Mechanical and radiological assessment of the influence of rhTGFbeta-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study. J Orthop Res 24:1670–1678PubMedCrossRefGoogle Scholar
  91. Manjubala I, Liu Y, Epari DR et al (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45:185–192PubMedCrossRefGoogle Scholar
  92. Markel MD, Wikenheiser MA, Chao EY (1990) A study of fracture callus material properties: relationship to the torsional strength of bone. J Orthop Res 8:843–850PubMedCrossRefGoogle Scholar
  93. Martini L, Fini M, Giavaresi G et al (2001) Sheep model in orthopedic research: a literature review. Comp Med 51:292–299PubMedGoogle Scholar
  94. Mastrogiacomo M, Corsi A, Francioso E et al (2006) Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate. Tissue Eng 12:1261–1273PubMedCrossRefGoogle Scholar
  95. Meinel L, Zoidis E, Zapf J et al (2003) Localized insulin-like growth factor I delivery to enhance new bone formation. Bone 33:660–672PubMedCrossRefGoogle Scholar
  96. Miettinen H, Makela EA, Vainio J et al (1992) The effect of an intramedullary self-reinforced poly-l-lactide (SR-PLLA) implant on growing bone with special reference to fixation properties: an experimental study on growing rabbits. J Biomater Sci Polym Ed 3:443–450PubMedCrossRefGoogle Scholar
  97. Mosekilde L, Weisbrode SE, Safron JA et al (1993) Calcium-restricted ovariectomized Sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone 14:379–382PubMedCrossRefGoogle Scholar
  98. Mousavi M, David R, Schwendenwein I et al (2002) Influence of controlled reaming on fat intravasation after femoral osteotomy in sheep. Clin Orthop Relat Res 394:263–270PubMedCrossRefGoogle Scholar
  99. Muscolo DL, Ayerza MA, Aponte-Tinao LA (2006) Massive allograft use in orthopedic oncology. Orthop Clin North Am 37:65–74PubMedCrossRefGoogle Scholar
  100. Nafei A, Danielsen CC, Linde F et al (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Joint Surg Br 82:910–920PubMedCrossRefGoogle Scholar
  101. Nair MB, Varma HK, Menon KV et al (2009) Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. Acta Biomater 5:1742–1755PubMedCrossRefGoogle Scholar
  102. Nakamura T, Hara Y, Tagawa M et al (1998) Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res 13:942–949PubMedCrossRefGoogle Scholar
  103. Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284SPubMedGoogle Scholar
  104. Neyt JG, Buckwalter JA, Carroll NC (1998) Use of animal models in musculoskeletal research. Iowa Orthop J 18:118–123PubMedGoogle Scholar
  105. Niemeyer P, Schonberger TS, Hahn J et al (2009) Xenogenic transplantation of human mesenchymal stem cells in a critical size defect of the sheep tibia for bone regeneration. Tissue Eng A 16:33–43Google Scholar
  106. Niemeyer P, Fechner K, Milz S et al (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579PubMedCrossRefGoogle Scholar
  107. O’Loughlin PF, Morr S, Bogunovic L et al (2008) Selection and development of preclinical models in fracture-healing research. J Bone Joint Surg Am 90(suppl 1):79–84PubMedCrossRefGoogle Scholar
  108. Oest ME, Dupont KM, Kong HJ et al (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950PubMedCrossRefGoogle Scholar
  109. Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10PubMedGoogle Scholar
  110. Pek YS, Gao S, Arshad MS et al (2008) Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds. Biomaterials 29:4300–4305PubMedCrossRefGoogle Scholar
  111. Perka C, Schultz O, Spitzer RS et al (2000) Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials 21:1145–1153PubMedCrossRefGoogle Scholar
  112. Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86PubMedCrossRefGoogle Scholar
  113. Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963PubMedCrossRefGoogle Scholar
  114. Puelacher WC, Vacanti JP, Ferraro NF et al (1996) Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg 25:223–228PubMedCrossRefGoogle Scholar
  115. Rahal SC, Volpi RS, Vulcano LC (2005) Treatment of segmental tibial defects using acute bone shortening followed by gradual lengthening with circular external fixator. J Vet Med A Physiol Pathol Clin Med 52:180–185PubMedCrossRefGoogle Scholar
  116. Raschke M, Kolbeck S, Bail H et al (2001) Homologous growth hormone accelerates healing of segmental bone defects. Bone 29:368–373PubMedCrossRefGoogle Scholar
  117. Ravaglioli A, Krajewski A, Celotti GC et al (1996) Mineral evolution of bone. Biomaterials 17:617–622PubMedCrossRefGoogle Scholar
  118. Reichert JC, Epari DR, Wullschleger ME et al (2010) Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev 16:93–104PubMedCrossRefGoogle Scholar
  119. Reichert JC, Wullschleger ME, Cipitria A et al (2011) Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop 35:1229–1236PubMedCrossRefGoogle Scholar
  120. Reichert JC, Epari DR, Wullschleger ME et al (2012) Bone tissue engineering: reconstruction of critical sized segmental bone defects in the ovine tibia. Orthopade 41:280–287PubMedCrossRefGoogle Scholar
  121. Rimondini L, Nicoli-Aldini N, Fini M et al (2005) In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:148–154PubMedCrossRefGoogle Scholar
  122. Rozen N, Bick T, Bajayo A et al (2009) Transplanted blood-derived endothelial progenitor cells (EPC) enhance bridging of sheep tibia critical size defects. Bone 45:918–924PubMedCrossRefGoogle Scholar
  123. Sarkar MR, Augat P, Shefelbine SJ et al (2006) Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27:1817–1823PubMedCrossRefGoogle Scholar
  124. Schell H, Epari DR, Kassi JP et al (2005) The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 23:1022–1028PubMedCrossRefGoogle Scholar
  125. Schemitsch EH, Kowalski MJ, Swiontkowski MF et al (1994) Cortical bone blood flow in reamed and unreamed locked intramedullary nailing: a fractured tibia model in sheep. J Orthop Trauma 8:373–382PubMedCrossRefGoogle Scholar
  126. Schemitsch EH, Kowalski MJ, Swiontkowski MF (1996) Soft-tissue blood flow following reamed versus unreamed locked intramedullary nailing: a fractured sheep tibia model. Ann Plast Surg 36:70–75PubMedCrossRefGoogle Scholar
  127. Schimandle JH, Boden SD (1994) Spine update: the use of animal models to study spinal fusion. Spine 19:1998–2006PubMedCrossRefGoogle Scholar
  128. Schneiders W, Reinstorf A, Biewener A et al (2008) In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res 27:15–21Google Scholar
  129. Schnettler R, Alt V, Dingeldein E et al (2003) Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials 24:4603–4608PubMedCrossRefGoogle Scholar
  130. Sciadini MF, Dawson JM, Johnson KD (1997) Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model. J Orthop Res 15:844–857PubMedCrossRefGoogle Scholar
  131. Skirving AP, Day R, Macdonald W et al (1987) Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs. Clin Orthop Relat Res 224:117–124PubMedGoogle Scholar
  132. Starr AJ, Welch RD, Eastridge BJ et al (2002) The effect of hemorrhagic shock in a caprine tibial fracture model. J Orthop Trauma 16:250–256PubMedCrossRefGoogle Scholar
  133. Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355:S239–S246PubMedCrossRefGoogle Scholar
  134. Sun C, Huang G, Christensen FB et al (1999) Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel. Chin Med J (Engl) 112:456–460Google Scholar
  135. Takigami H, Kumagai K, Latson L et al (2007) Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J Orthop Res 25:1333–1342PubMedCrossRefGoogle Scholar
  136. Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55:533–544PubMedCrossRefGoogle Scholar
  137. Taylor WR, Ehrig RM, Duda GN et al (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23:726–734PubMedCrossRefGoogle Scholar
  138. Taylor WR, Ehrig RM, Heller MO et al (2006) Tibio-femoral joint contact forces in sheep. J Biomech 39:791–798PubMedCrossRefGoogle Scholar
  139. Teixeira CR, Rahal SC, Volpi RS et al (2007) Tibial segmental bone defect treated with bone plate and cage filled with either xenogeneic composite or autologous cortical bone graft: an experimental study in sheep. Vet Comp Orthop Traumatol 20:269–276PubMedGoogle Scholar
  140. Tepic S, Remiger AR, Morikawa K et al (1997) Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma 11:14–23PubMedCrossRefGoogle Scholar
  141. Thorwarth M, Schultze-Mosgau S, Kessler P et al (2005) Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633PubMedCrossRefGoogle Scholar
  142. Tiedeman JJ, Lippiello L, Connolly JF et al (1990) Quantitative roentgenographic densitometry for assessing fracture healing. Clin Orthop Relat Res 253:279–286PubMedGoogle Scholar
  143. Tseng SS, Lee MA, Reddi AH (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90(Suppl 1):92–98PubMedCrossRefGoogle Scholar
  144. Tyllianakis M, Deligianni D, Panagopoulos A et al (2007) Biomechanical comparison of callus over a locked intramedullary nail in various segmental bone defects in a sheep model. Med Sci Monit 13:BR125–BR130PubMedGoogle Scholar
  145. van der Elst M, Klein CP, de Blieck-Hogervorst JM et al (1999) Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20:121–128PubMedCrossRefGoogle Scholar
  146. Viateau V, Guillemin G, Yang YC et al (2004) A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am J Vet Res 65:1653–1657PubMedCrossRefGoogle Scholar
  147. Viateau V, Guillemin G, Calando Y et al (2006) Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 35:445–452PubMedCrossRefGoogle Scholar
  148. Viateau V, Guillemin G, Bousson V et al (2007) Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res 25:741–749PubMedCrossRefGoogle Scholar
  149. Wallace AL, Makki R, Weiss JB et al (1995) Measurement of serum angiogenic factor in devascularized experimental tibial fractures. J Orthop Trauma 9:324–332PubMedCrossRefGoogle Scholar
  150. Wang X, Mabrey JD, Agrawal CM (1998) An interspecies comparison of bone fracture properties. Biomed Mater Eng 8:1–9PubMedGoogle Scholar
  151. Wang CJ, Huang HY, Chen HH et al (2001) Effect of shock wave therapy on acute fractures of the tibia: a study in a dog model. Clin Orthop Relat Res 387:112–118PubMedCrossRefGoogle Scholar
  152. Wefer J, Wefer A, Schratt HE et al (2000) Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects: value of ultrasonic follow up. Unfallchirurg 103:452–461PubMedCrossRefGoogle Scholar
  153. Welch RD, Jones AL, Bucholz RW et al (1998) Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. J Bone Miner Res 13:1483–1490PubMedCrossRefGoogle Scholar
  154. Wildemann B, Kadow-Romacker A, Pruss A et al (2007) Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank 8:107–114PubMedCrossRefGoogle Scholar
  155. Wilson DJ, Morgan RL, Hesselden KL et al (2009) A single-channel telemetric intramedullary nail for in vivo measurement of fracture healing. J Orthop Trauma 23:702–709PubMedCrossRefGoogle Scholar
  156. Windhagen H, Kolbeck S, Bail H et al (2000) Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res 18:912–919PubMedCrossRefGoogle Scholar
  157. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195PubMedCrossRefGoogle Scholar
  158. Zhu L, Liu W, Cui L et al (2006) Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 12:423–433PubMedCrossRefGoogle Scholar
  159. Zhu L, Chuanchang D, Wei L et al (2010) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28:412–418PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Johannes C. Reichert
    • 1
  • Arne Berner
    • 1
  • Siamak Saifzadeh
    • 1
  • Dietmar W. Hutmacher
    • 1
  1. 1.Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia

Personalised recommendations