Three Constants of Nature

  • Peter Mittelstaedt
Part of the Fundamental Theories of Physics book series (FTPH, volume 174)


In accordance with the results of the preceding Chaps.  2 and  3, we assume that the two fundamental theories of modern physics, the Theory of Relativity (SR) and Quantum Mechanics (QM), can be obtained from the classical space-time theory and classical mechanics (CM) by abandoning or relaxing hypothetical assumptions contained in these classical structures. In addition, it became also obvious in the preceding chapters that classical mechanics and Newton’s space-time theory describe a fictitious world that does not exist in reality. Hence, we do not expect to find in modern physics any indications that refer to classical mechanics and to Newton’s space-time. Possible traces of absolute time and absolute space are equally eliminated in Special and General Relativity as the classical limit in Quantum Mechanics. In modern physics we can completely dispense with the pretended classical roots. In Quantum Mechanics as well as in Relativity there is no need and no room for anything like a correspondence principle or a non-relativistic limit, respectively.


Quantum Mechanic Special Relativity Modern Physic Effect Algebra Quantum Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Borchers, H. J., & Hegerfeldt, G. C. (1972). Über ein Problem der Relativitätstheorie: Wann sind Punktabbildungen des Rn linear? (Nachrichten der Akademie der Wissenschaften in Göttingen, II, Vol. Mathematisch-Physikalische Klasse, 10, pp. 205–229). Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  2. Busch, P. (1985). Indeterminacy relations and simultaneous measurements in quantum theory. International Journal of Theoretical Physics, 24, 63–92.MathSciNetADSCrossRefGoogle Scholar
  3. Busch, P., Grabowski, M., & Lahti, P. (1995). Operational quantum physics. Heidelberg: Springer.zbMATHGoogle Scholar
  4. Busch, P., Heinonen, T., & Lahti, P. (2007). Heisenberg´s uncertainty principle. Physics Reports, 452, 155–176.ADSCrossRefGoogle Scholar
  5. Carr, B. (2007). Universe or multiverse ? Cambridge: Cambridge University Press.Google Scholar
  6. Dalla Chiara, M. L. (1995). Unsharp quantum logics. International Journal of Theoretical Physics, 34, 1331–1336.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Ellis, G. F. R. et al. (2003). Multiverse and physical cosmology.
  8. Foulis, D. J., & Bennett, M. K. (1994). Effect algebras and unsharp quantum logics. Foundation of Physics, 24, 1331–1352.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Franck, P., & Rothe, H. (1911). Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme. Annalen der Physik, 34, 825–855.ADSCrossRefGoogle Scholar
  10. Gamov, G. (1946). Mr. Tompkins in wonderland. New York: The Macmillan Company.Google Scholar
  11. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  12. Ignatowski, W. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.Google Scholar
  13. Jauch, J. M. (1968). Foundations of Quantum Mechanics. Reading: Addison –Wesley.zbMATHGoogle Scholar
  14. Lévy-Leblond, J. M. (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44, 271–277.ADSCrossRefGoogle Scholar
  15. Linde, A. D. (1990). Inflation and quantum cosmology. San Diego/London: Academic Press, Inc.zbMATHGoogle Scholar
  16. MacLaren, M. D. (1965). Nearly modular orthocomplemented lattices. Transactions of the American Mathematical Society, 114, 401–416.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Martzke, R., & Wheeler, J. A. (1964). Gravitation as geometry I: The geometry of space-time and the geometrodynamical standard meter. In H. Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: A. Benjamin.Google Scholar
  18. Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman.Google Scholar
  19. Mittelstaedt, P. (1976a). Philosophical problems of modern physics. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  20. Mittelstaedt, P. (1995). Klassische Mechanik (2nd ed.). Mannheim: Bilbliographisches Institut.Google Scholar
  21. Mittelstaedt, P. (2005). Quantum physics and classical physics − in the light of quantum logic. International Journal of Theoretical Physics, 44, 771–781.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Mittelstaedt, P. (2006). Intuitiveness and truth in modern physics. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 251–266). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Penrose, R. (1959). The apparent shape of a relativistically moving sphere. Mathematical Proceedings of the Cambridge Philosophical Society, 55, 137–139.MathSciNetCrossRefGoogle Scholar
  24. Piron, C. (1976). Foundations of quantum physics. Reading: W. A. Benjamin.zbMATHGoogle Scholar
  25. Sakharov, A. D. (1967). Vacuum quantum fluctuations in curved space and the theory of gravitation. Doklady Akad. Nauk S.S.S.R., 177, 70–71. English translation Soviet Physics Doklady 12, 1040–1041.Google Scholar
  26. Sexl, R. U., & Urbantke, H. K. (1992). Relativität, Gruppen, Teilchen (3rd ed.). New York: Springer.zbMATHGoogle Scholar
  27. Solèr, M.-P. (1995). Characterisation of Hilbert spaces by orthomodular lattices. Communications in Algebra, 23(1), 219–243.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Terrell, J. (1959). Invisibility of the Lorentz contraction. Physical Review, 116, 1041–1045.MathSciNetADSCrossRefGoogle Scholar
  29. Vilenkin, A. (1982). Creation of universes from nothing. Physics Letters, 117 B, 25–28.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Peter Mittelstaedt
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations