Combination of X-ray Powder Diffraction, Electron Diffraction and HRTEM Data

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

A combination of X-ray and electron scattering data can facilitate structure analysis of polycrystalline materials that are problematic to study by conventional methods. Different electron diffraction data collection techniques as well as high-resolution imaging are described. A number of diverse algorithms of data combination and their applications to structural analysis of several materials systems are provided.

Keywords

Select Area Electron Diffraction HRTEM Image Powder Diffraction Data Electron Diffraction Data Structure Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    David WIF, Shankland K (2008) Structure determination from powder diffraction data. Acta Crystallogr A 64:52–64ADSCrossRefGoogle Scholar
  2. 2.
    Dorset DL (1995) Structural electron crystallography. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Zou XD, Hovmöller S (2008) Electron crystallography: imaging and single-crystal diffraction from powders. Acta Crystallogr A 64:149–160ADSCrossRefGoogle Scholar
  4. 4.
    David WIF, Shankland K, McCusker LB, Baerlocher C (eds) (2002) Structure determination from powder diffraction data. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Baerlocher C, McCusker LB (2004) Structure determination from powder diffraction data. Z Kristallogr 219(Special Issue):782–901CrossRefGoogle Scholar
  6. 6.
    Miller R, DeTitta GT, Jones R, Langs DA, Weeks CM, Hauptman HA (1993) On the application of the minimal principle to solve unknown structures. Science 259:1430ADSCrossRefGoogle Scholar
  7. 7.
    Oszlányi G, Sütő A (2008) Ab initio structure solution by charge flipping. Acta Crystallogr A 64:123–134ADSCrossRefGoogle Scholar
  8. 8.
    Grosse-Kunstleve RW, McCusker LB, Baerlocher C (1997) Powder diffraction data and chemical information combined in an automated structure determination procedure for zeolites. J Appl Crystallogr 30:985–995CrossRefGoogle Scholar
  9. 9.
    Brenner S, McCusker LB, Baerlocher C (1997) Using a structure envelope to facilitate structure solution from powder diffraction data. J Appl Crystallogr 30:1167–1172CrossRefGoogle Scholar
  10. 10.
    Brenner S, McCusker LB, Baerlocher C (2002) The application of structure envelopes in structure determination from powder diffraction data. J Appl Crystallogr 235:243–252CrossRefGoogle Scholar
  11. 11.
    Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53:271–282CrossRefGoogle Scholar
  12. 12.
    Oleynikov P, Hovmöller S, Zou XD (2007) Precession electron diffraction: observed and calculated intensities. Ultramicroscopy 107:523–533CrossRefGoogle Scholar
  13. 13.
    Weirich TE, Portillo J, Cox G, Hibst H, Nicolopoulos S (2006) Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100 kV precession electron diffraction data. Ultramicroscopy 106(1):64–175Google Scholar
  14. 14.
    Dorset DL, Gilmore CJ, Jorda JL, Nicolopoulos S (2007) Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy 107:462–473CrossRefGoogle Scholar
  15. 15.
    Gilmore CJ, Dong W, Dorset DL (2008a) Solving the crystal structures of zeolites using electron diffraction data. I. The use of potential-density histograms. Acta Crystallogr A 64:284–294; Gilmore CJ, Dong W, Dorset DL (2008b) Solving the crystal structures of zeolites using electron diffraction data. II. Density-building functions. Acta Crystallogr A 64:295–302Google Scholar
  16. 16.
    Boullay P, Dorcet V, Perez O, Grygiel C, Prellier W, Mercey B, Hervieu M (2009) Structure determination of a brownmillerite Ca2Co2O5 thin film by precession electron diffraction. Phys Rev B 79:184108ADSCrossRefGoogle Scholar
  17. 17.
    Hovmöller S (1992) CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41:121–135CrossRefGoogle Scholar
  18. 18.
    Baerlocher C, McCusker LB, Palatinus L (2007) Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z Kristallogr 222:47–53CrossRefGoogle Scholar
  19. 19.
    Palatinus L, Chapuis G (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790CrossRefGoogle Scholar
  20. 20.
    Zhang KYJ, Main P (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr A 46:41–46CrossRefGoogle Scholar
  21. 21.
    Corma A, Rey F, Valencia S, Jorda JL, Rius J (2003) A zeolite with interconnected 8–10- and 12-ring pores and its unique catalytic selectivity. Nature Mater 2:493–497ADSCrossRefGoogle Scholar
  22. 22.
    Gramm F (2007) Kombination von Transmissions-Elektronenmikroskopie mit Pulver-Beugungsdaten zur Lösung von komplexen Zeolith-Strukturen. Ph.D. thesis, ETH Zurich, SwitzerlandGoogle Scholar
  23. 23.
    Oszlányi G, Sütő A (2004) Ab initio structure solution by charge flipping. Acta Crystallogr A 60:134–141; Oszlányi G, Sütő A (2005) Ab initio structure solution by charge flipping II. Use of weak reflections. Acta Crystallogr A 61:147–152Google Scholar
  24. 24.
    Gramm F, Baerlocher C, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Liu Z, Ohsuna T, Terasaki O (2006) Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444:79–81ADSCrossRefGoogle Scholar
  25. 25.
    Baerlocher C, Gramm F, Massüger L, McCusker LB, He Z, Hovmöller S, Zou X (2007) Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315:1113–1116ADSCrossRefGoogle Scholar
  26. 26.
    Baerlocher C, Xie D, McCusker LB, Hwang SJ, Chan IY, Ong K, Burton AW, Zones SI (2008) Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater 7:631–635ADSCrossRefGoogle Scholar
  27. 27.
    Xie D, Baerlocher C, McCusker LB (2008) Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution. J Appl Crystallogr 41:1115–1121CrossRefGoogle Scholar
  28. 28.
    Dorset DL (2006) The crystal structure of ZSM-10, a powder X-ray and electron diffraction study. Z Kristallogr 221:260–265CrossRefGoogle Scholar
  29. 29.
    Dorset DL, Strohmaier KG, Kliewer CE, Corma A, Diaz-Cabanas MJ, Rey F, Gilmore CJ (2008) Crystal structure of ITQ-26, a 3D framework with extra-large pores. Chem Mater 20:5325–5331CrossRefGoogle Scholar
  30. 30.
    Gilmore CJ, Dong W, Bricogne G (1999) A multisolution method of phase determination by combined maximization of entropy and likelihood. VI. The use of error-correcting codes as a source of phase permutation and their application to the phase problem in powder, electron and macromolecular crystallography. Acta Crystallogr A 55:70–83CrossRefGoogle Scholar
  31. 31.
    Sun J, Bonneau C, Cantín Á, Corma A, Díaz-Cabañas MJ, Moliner M, Zhang D, Li M, Zou X (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458:1154–1158ADSCrossRefGoogle Scholar
  32. 32.
    Zou XD, Sukharev Y, Hovmöller S (1993) Quantitative measurement of intensities from electron diffraction patterns for structure determination – new features in the program system ELD. Ultramicroscopy 52:436–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Laboratory of CrystallographyETH ZurichZurichSwitzerland

Personalised recommendations