Advertisement

Impact of Fire Emissions on Air Quality in the Euro-Mediterranean Region

  • S. TurquetyEmail author
  • P. Messina
  • S. Stromatas
  • A. Anav
  • L. Menut
  • B. Bessagnet
  • J.-C. Péré
  • P. Drobinski
  • P. F. Coheur
  • Y. Rhoni
  • C. Clerbaux
  • D. Tanré
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

We present a regional emission inventory constructed based on satellite observations of fire activity (MODIS) and the ORCHIDEE vegetation model, and its application to air quality forecasting. After a brief description of the variability of fire activity in the Euro-Mediterranean region during the past 8 years, a full evaluation of the emissions is performed for the case study of the summer of 2007, during the large Greek fires event. Therefore, regional simulations undertaken with the CHIMERE chemistry-transport model (CTM) are compared to surface and satellite observations of trace gases and aerosols.

Keywords

Chimere model Fire emissions MODIS 

Notes

Acknowledgments

This work is done in the framework of the APIFLAME project (www.lmd.polytechnique.fr/apiflame), supported by the PRIMEQUAL program (contract number 0962c0068). Work on satellite observations is supported by CNES. S. Stromatas is supported by a fellowship from CNES and ADEME.

References

  1. 1.
    Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11:4039–4072CrossRefGoogle Scholar
  2. 2.
    Bessagnet B, Menut L, Curci G, Hodzic A, Guillaume B, Liousse C, Moukhtar S, Pun B, Seigneur C, Schulz M (2009) Regional modeling of carbonaceous aerosols over Europe – focus on secondary organic aerosols. J Atmos Chem 61:175–202CrossRefGoogle Scholar
  3. 3.
    Coheur P-F, Clarisse L, Turquety S, Hurtmans D, Clerbaux C (2009) IASI measurements of reactive trace species in biomass burning plumes. Atmos Chem Phys 9:5655–5667CrossRefGoogle Scholar
  4. 4.
    Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the terra and aqua MODIS sensors. J Geophys Res 111:G02016. doi: 10.1029/2005JG000142 CrossRefGoogle Scholar
  5. 5.
    Hoelzemann JJ, Schultz MG, Brasseur GP, Granier C, Simon M (2004) Global Wildland Fire Emission Model (GWEM): evaluating the use of global area burnt satellite data. J Geophys Res 109:D14S04. doi: 10.1029/2003JD003666 CrossRefGoogle Scholar
  6. 6.
    Maignan F, Bréon F-M, Chevallier F, Viovy N, Ciais P, Garrec G, Trules J, Mancip M (2011) Evaluation of a dynamical global végétation model using time series of satellite végétation indices. Geosci Model Dev Discuss 4:907–941CrossRefGoogle Scholar
  7. 7.
    Menut L, Chiapello I, Moulin C (2009) Previsibility of mineral dust concentrations: the CHIMERE-DUST forecast during the first AMMA experiment dry season. J Geophys Res 114:D07202. doi: 10.1029/2008JD010523 CrossRefGoogle Scholar
  8. 8.
    Péré JC, Mallet M, Pont V, Bessagnet B (2011) Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: a modeling study. J Geophys Res 116:D23119. doi: 10.1029/2011JD016240 CrossRefGoogle Scholar
  9. 9.
    Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Remote Sens Environ 97:137–162CrossRefGoogle Scholar
  10. 10.
    Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2(3):207–247. doi: 10.1007/BF00137988 CrossRefGoogle Scholar
  11. 11.
    Turquety S, Hurtmans D, Hadji-Lazaro J, Coheur P-F, Clerbaux C, Josset D, Tsamalis C (2009) Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires. Atmos Chem Phys 9:4897–4913CrossRefGoogle Scholar
  12. 12.
    van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi: 10.5194/acp-10-11707-2010 CrossRefGoogle Scholar
  13. 13.
    Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja AJ (2011) The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev 4:625–641. doi: 10.5194/gmd-4-625-2011 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Turquety
    • 1
    Email author
  • P. Messina
    • 2
  • S. Stromatas
    • 2
  • A. Anav
    • 2
  • L. Menut
    • 1
  • B. Bessagnet
    • 3
  • J.-C. Péré
    • 3
  • P. Drobinski
    • 2
  • P. F. Coheur
    • 4
  • Y. Rhoni
    • 4
  • C. Clerbaux
    • 4
    • 5
  • D. Tanré
    • 6
  1. 1.LMD-IPSL, Université Pierre et Marie Curie – Paris 6ParisFrance
  2. 2.LMD-IPSL, CNRS, Ecole PolytechniquePalaiseauFrance
  3. 3.INERISVerneuil-en-HalatteFrance
  4. 4.Université Libre de BruxellesBrusselsBelgium
  5. 5.LATMOS, IPSL, CNRS, INSU, UPMCParisFrance
  6. 6.LOA, CNRS, Université de Lille 1Villeneuve d’AscqFrance

Personalised recommendations