Metallomics and the Cell pp 241-278 | Cite as
The Iron Metallome in Eukaryotic Organisms
Abstract
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.
Keywords
eukaryote heme iron metallome iron-sulfur cluster iron trafficking metal homeostasisAbbreviations
- ABC
ATP-binding cassette
- ALA
δ-aminolevulinic acid
- ALAD
aminolevulinate dehydratase
- ALAS
ALA synthase
- ARE
AU-rich elements
- ATP
adenosine 5’-triphosphate
- BDH2
3-hydroxybutyrate dehydrogenase, type 2
- BMP
bone morphogenic protein
- C/EBPα
CCAAT enhancer-binding protein α
- CIA
cytosolic Fe-S protein assembly
- CoA
coenzyme A
- Cp
ceruloplasmin
- CPgenIII
coproporphyrinogen III
- CPOX
coproporphyrinogen oxidase
- DHBA
dihydroxybenzoic acid
- DMTI
divalent metal transporter 1 (= SCL11A1)
- dNDP
deoxynucleoside diphosphate
- dNTP
deoxynucleoside triphosphate
- EPR
electron paramagnetic resonance
- ER
endoplasmic reticulum
- EXAFS
extended X-ray absorption fine structure
- FECH
ferrochelatase
- FeRE
iron-responsive element
- FIH1
factor inhibiting HIF
- FPN
ferroportin
- Grx
glutaredoxin
- GSH
glutathione
- GST
glutathione S-transferase
- HCP1
heme carrier protein 1
- HIF
hypoxia-inducible factor
- HMB
hydroxymethylbilane
- HO-1
heme oxygenase-1
- HRG
heme responsive gene
- IMS
intermembrane space
- IRE
iron regulatory element
- IRP
iron regulatory protein
- ISC
iron-sulfur cluster
- LIP
labile iron pool
- Mfrn
mitoferrin
- NADH
nicotinamide adenine dinucleotide reduced
- NDP
nucleoside 5’-diphosphate
- NRAMP
natural resistance-associated macrophage protein
- NTP
nucleoside 5’-triphosphate
- PBGD
porphobilinogen deaminase
- PCBP
poly (rC) binding protein
- PHD
prolyl hydroxylase
- PIXE
particle-induced X-ray emission
- PPgenIX
protoporphyrinogen IX
- PPIX
protoporphyrin IX
- PPOX
protoporphyrinogen oxidase
- RBC
red blood cells
- RNR
ribonucleotide reductase
- ROS
reactive oxygen species
- RNS
reactive nitrogen species
- SCF
SKP1-CUL1-F-box
- SOD
superoxide dismutase
- STEAP
six-transmembrane epithelial antigen of the prostate
- TCA
tricarboxylic acid
- Tf
transferrin
- TfR
Tf receptor
- TTP
tristetraprolin
- TZF
tandem zinc finger
- UPgenIII
uroporphyrinogen III
- URO3S
uroporphyrinogen III synthase
- UROD
uroporphyrinogen decarboxylase
- UTR
untranslated region
- VHL
von Hippel-Lindau
- XANES
X-ray absorption near edge structure
- XAS
X-ray absorption spectroscopy
- XRFM
X-ray fluorescence microscopy
Notes
Acknowledgments
This work was funded by the National Institutes of Health Grants ES013780 and GM086619 and the South Carolina Research Foundation. The authors would like to thank Dr. L. Celeste for helpful discussions.
References
- 1.D. J. Eide, S. Clark, T. M. Nair, M. Gehl, M. Gribskov, M. L. Guerinot, J. F. Harper, Genome Biol. 2005, 6, R77.PubMedGoogle Scholar
- 2.S. Epsztejn, H. Glickstein, V. Picard, I. N. Slotki, W. Breuer, C. Beaumont, Z. I. Cabantchik, Blood 1999, 94, 3593–3603.PubMedGoogle Scholar
- 3.F. Petrat, U. Rauen, H. de Groot, Hepatology 1999, 29, 1171–1179.PubMedGoogle Scholar
- 4.D. Ceccarelli, D. Gallesi, F. Giovannini, M. Ferrali, A. Masini, Biochem. Biophys. Res. Commun. 1995, 209, 53–59.PubMedGoogle Scholar
- 5.X. Gao, M. Qian, J. L. Campian, J. Marshall, Z. Zhou, A. M. Roberts, Y. J. Kang, S. D. Prabhu, X. F. Sun, J. W. Eaton, Free Radic. Biol. Med. 2010, 49, 401–407.Google Scholar
- 6.J. Petrak, D. Myslivcova, P. Man, R. Cmejla, J. Cmejlova, D. Vyoral, Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1059–1066.Google Scholar
- 7.R. Miao, G. P. Holmes-Hampton, P. A. Lindahl, Biochemistry 2011, 50, 2660–2671.PubMedGoogle Scholar
- 8.P. A. Lindahl, G. P. Holmes-Hampton, Curr. Opin. Chem. Biol. 2011, 15, 342–346.PubMedGoogle Scholar
- 9.A. L. Cockrell, G. P. Holmes-Hampton, S. P. McCormick, M. Chakrabarti, P. A. Lindahl, Biochemistry 2011, 50, 10275–10283.PubMedGoogle Scholar
- 10.G. P. Holmes-Hampton, R. Miao, J. Garber Morales, Y. Guo, E. Munck, P. A. Lindahl, Biochemistry 2010, 49, 4227–4234.PubMedGoogle Scholar
- 11.R. Miao, H. Kim, U. M. Koppolu, E. A. Ellis, R. A. Scott, P. A. Lindahl, Biochemistry 2009, 48, 9556–9568.PubMedGoogle Scholar
- 12.R. Ortega, G. Deves, A. Carmona, J. R. Soc. Interface 2009, 6 Suppl 5, S649–658.Google Scholar
- 13.C. J. Fahrni, Curr. Opin. Chem. Biol. 2007, 11, 121–127.PubMedGoogle Scholar
- 14.T. C. Iancu, Y. Deugnier, J. W. Halliday, L. W. Powell, P. Brissot, J. Hepatol. 1997, 27, 628–638.PubMedGoogle Scholar
- 15.C. D. Kaplan, J. Kaplan, Chem. Rev. 2009, 109, 4536–4552.PubMedGoogle Scholar
- 16.M. W. Hentze, M. U. Muckenthaler, N. C. Andrews, Cell 2004, 117, 285–297.PubMedGoogle Scholar
- 17.G. Bao, M. Clifton, T. M. Hoette, K. Mori, S. X. Deng, A. Qiu, M. Viltard, D. Williams, N. Paragas, T. Leete, R. Kulkarni, X. Li, B. Lee, A. Kalandadze, A. J. Ratner, J. C. Pizarro, K. M. Schmidt-Ott, D. W. Landry, K. N. Raymond, R. K. Strong, J. Barasch, Nat. Chem. Biol. 2010, 6, 602–609.PubMedGoogle Scholar
- 18.L. R. Devireddy, D. O. Hart, D. H. Goetz, M. R. Green, Cell 2010, 141, 1006–1017.PubMedGoogle Scholar
- 19.C. Correnti, R. K. Strong, J. Biol. Chem. 2012, 287, 13524–13531.Google Scholar
- 20.F. Petrat, H. de Groot, U. Rauen, Biochem. J. 2001, 356, 61–69.PubMedGoogle Scholar
- 21.M. W. Hentze, M. U. Muckenthaler, B. Galy, C. Camaschella, Cell 2010, 142, 24–38.PubMedGoogle Scholar
- 22.R. C. Hider, X. L. Kong, Biometals 2011, 24, 1179–1187.PubMedGoogle Scholar
- 23.U. Muhlenhoff, S. Molik, J. R. Godoy, M. A. Uzarska, N. Richter, A. Seubert, Y. Zhang, J. Stubbe, F. Pierrel, E. Herrero, C. H. Lillig, R. Lill, Cell Metab. 2010, 12, 373–385.PubMedGoogle Scholar
- 24.F. Petrat, D. Weisheit, M. Lensen, H. de Groot, R. Sustmann, U. Rauen, Biochem. J. 2002, 362, 137–147.PubMedGoogle Scholar
- 25.U. Rauen, A. Springer, D. Weisheit, F. Petrat, H. G. Korth, H. de Groot, R. Sustmann, Chembiochem 2007, 8, 341–352.PubMedGoogle Scholar
- 26.B. Sturm, U. Bistrich, M. Schranzhofer, J. P. Sarsero, U. Rauen, B. Scheiber-Mojdehkar, H. de Groot, P. Ioannou, F. Petrat, J. Biol. Chem. 2005, 280, 6701–6708.Google Scholar
- 27.J. P. Kehrer, Toxicology 2000, 149, 43–50.PubMedGoogle Scholar
- 28.I. I. Rovira, T. Finkel, B. S. Masters, M. B. Dickman, J. Lee, S. W. Ragsdale, C. C. Lee, in Redox Biochemistry, Eds R. Banerjee, D. F. Becker, M. B. Dickman, V. N. Gladyshev, S. W. Ragsdale, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.Google Scholar
- 29.K. Jomova, M. Valko, Toxicology 2011, 283, 65–87.PubMedGoogle Scholar
- 30.H. Lin, L. Li, X. Jia, D. M. Ward, J. Kaplan, J. Biol. Chem. 2011, 286, 3851–3862.Google Scholar
- 31.R. M. Lebovitz, H. Zhang, H. Vogel, J. Cartwright, Jr., L. Dionne, N. Lu, S. Huang, M. M. Matzuk, Proc. Natl. Acad. Sci. USA 1996, 93, 9782–9787.Google Scholar
- 32.Y. Li, T. T. Huang, E. J. Carlson, S. Melov, P. C. Ursell, J. L. Olson, L. J. Noble, M. P. Yoshimura, C. Berger, P. H. Chan, D. C. Wallace, C. J. Epstein, Nat. Genet. 1995, 11, 376–381.PubMedGoogle Scholar
- 33.A. Naranuntarat, L. T. Jensen, S. Pazicni, J. E. Penner-Hahn, V. C. Culotta, J. Biol. Chem. 2009, 284, 22633–22640.Google Scholar
- 34.M. Yang, P. A. Cobine, S. Molik, A. Naranuntarat, R. Lill, D. R. Winge, V. C. Culotta, EMBO J. 2006, 25, 1775–1783.PubMedGoogle Scholar
- 35.H. A. Jouihan, P. A. Cobine, R. C. Cooksey, E. A. Hoagland, S. Boudina, E. D. Abel, D. R. Winge, D. A. McClain, Mol. Med. 2008, 14, 98–108.PubMedGoogle Scholar
- 36.L. Yin, N. Wu, J. C. Curtin, M. Qatanani, N. R. Szwergold, R. A. Reid, G. M. Waitt, D. J. Parks, K. H. Pearce, G. B. Wisely, M. A. Lazar, Science 2007, 318, 1786–1789.PubMedGoogle Scholar
- 37.M. K. Johnson, Curr. Opin. Chem. Biol. 1998, 2, 173–181.PubMedGoogle Scholar
- 38.K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, Science 2011, 334, 974–977.PubMedGoogle Scholar
- 39.T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. Andrade, E. Schleicher, S. Weber, D. C. Rees, O. Einsle, Science 2011, 334, 940.PubMedGoogle Scholar
- 40.A. Sheftel, O. Stehling, R. Lill, Trends Endocrinol. Metab. 2010, 21, 302–314.Google Scholar
- 41.I. Hamza, ACS Chem. Biol. 2006, 1, 627–629.Google Scholar
- 42.R. S. Ajioka, J. D. Phillips, J. P. Kushner, Biochim. Biophys. Acta 2006, 1763, 723–736.Google Scholar
- 43.P. M. Shoolingin-Jordan, A. Al-Dbass, L. A. McNeill, M. Sarwar, D. Butler, Biochem. Soc. Trans. 2003, 31, 731–735.PubMedGoogle Scholar
- 44.P. C. Krishnamurthy, G. Du, Y. Fukuda, D. Sun, J. Sampath, K. E. Mercer, J. Wang, B. Sosa-Pineda, K. G. Murti, J. D. Schuetz, Nature 2006, 443, 586–589.PubMedGoogle Scholar
- 45.I. J. Schultz, C. Chen, B. H. Paw, I. Hamza, J. Biol. Chem. 2010, 285, 26753–26759.Google Scholar
- 46.H. A. Dailey, Biochem. Soc. Trans. 2002, 30, 590–595.PubMedGoogle Scholar
- 47.S. Park, O. Gakh, H. A. O’Neill, A. Mangravita, H. Nichol, G. C. Ferreira, G. Isaya, J. Biol. Chem. 2003, 278, 31340–31351.Google Scholar
- 48.T. A. Rouault, Dis. Model. Mech. 2012, 5, 155–164.PubMedGoogle Scholar
- 49.S. Severance, I. Hamza, Chem. Rev. 2009, 109, 4596–4616.PubMedGoogle Scholar
- 50.N. Spielewoy, H. Schulz, J. M. Grienenberger, L. Thony-Meyer, G. Bonnard, J. Biol. Chem. 2001, 276, 5491–5497.Google Scholar
- 51.J. W. Harvey, E. Beutler, Blood 1982, 60, 1227–1230.PubMedGoogle Scholar
- 52.Y. Nakai, N. Umeda, T. Suzuki, M. Nakai, H. Hayashi, K. Watanabe, H. Kagamiyama, J. Biol. Chem. 2004, 279, 12363–12368.Google Scholar
- 53.R. Lill, U. Muhlenhoff, Annu. Rev. Biochem. 2008, 77, 669–700.PubMedGoogle Scholar
- 54.P. Subramanian, A. V. Rodrigues, S. Ghimire-Rijal, T. L. Stemmler, Curr. Opin. Chem. Biol. 2011, 15, 312–318.PubMedGoogle Scholar
- 55.J. Bridwell-Rabb, C. Iannuzzi, A. Pastore, D. P. Barondeau, Biochemistry 2012, 51, 2506–2514.PubMedGoogle Scholar
- 56.Y. Ichikawa, M. Bayeva, M. Ghanefar, V. Potini, L. Sun, R. K. Mutharasan, R. Wu, A. Khechaduri, T. Jairaj Naik, H. Ardehali, Proc. Natl. Acad. Sci. USA 2012, 109, 4152–4157.Google Scholar
- 57.T. Bedekovics, H. Li, G. B. Gajdos, G. Isaya, J. Biol. Chem. 2011, 286, 40878–40888.Google Scholar
- 58.L. Banci, I. Bertini, S. Ciofi-Baffoni, F. Boscaro, A. Chatzi, M. Mikolajczyk, K. Tokatlidis, J. Winkelmann, Chem. Biol. 2011, 18, 794–804.PubMedGoogle Scholar
- 59.A. K. Sharma, L. J. Pallesen, R. J. Spang, W. E. Walden, J. Biol. Chem. 2010, 285, 26745–26751.Google Scholar
- 60.H. Li, D. T. Mapolelo, N. N. Dingra, G. Keller, P. J. Riggs-Gelasco, D. R. Winge, M. K. Johnson, C. E. Outten, J. Biol. Chem. 2011, 286, 867–876.Google Scholar
- 61.J. A. Cotruvo, J. Stubbe, Annu. Rev. Biochem. 2011, 80, 733–767.PubMedGoogle Scholar
- 62.Y. Zhang, L. Liu, X. Wu, X. An, J. Stubbe, M. Huang, J. Biol. Chem. 2011, 286, 41499–41509.Google Scholar
- 63.M. R. Bleackley, R. T. Macgillivray, Biometals 2011, 24, 785–809.PubMedGoogle Scholar
- 64.A. Kumanovics, O. S. Chen, L. Li, D. Bagley, E. M. Adkins, H. Lin, N. N. Dingra, C. E. Outten, G. Keller, D. Winge, D. M. Ward, J. Kaplan, J. Biol. Chem. 2008, 283, 10276–10286.Google Scholar
- 65.H. Li, D. T. Mapolelo, N. N. Dingra, S. G. Naik, N. S. Lees, B. M. Hoffman, P. J. Riggs-Gelasco, B. H. Huynh, M. K. Johnson, C. E. Outten, Biochemistry 2009, 48, 9569–9581.PubMedGoogle Scholar
- 66.M. Shayeghi, G. O. Latunde-Dada, J. S. Oakhill, A. H. Laftah, K. Takeuchi, N. Halliday, Y. Khan, A. Warley, F. E. McCann, R. C. Hider, D. M. Frazer, G. J. Anderson, C. D. Vulpe, R. J. Simpson, A. T. McKie, Cell 2005, 122, 789–801.PubMedGoogle Scholar
- 67.G. J. Anderson, C. D. Vulpe, Cell. Mol. Life Sci. 2009, 66, 3241–3261.Google Scholar
- 68.A. Rajagopal, A. U. Rao, J. Amigo, M. Tian, S. K. Upadhyay, C. Hall, S. Uhm, M. K. Mathew, M. D. Fleming, B. H. Paw, M. Krause, I. Hamza, Nature 2008, 453, 1127–1131.PubMedGoogle Scholar
- 69.A. Nandal, J. C. Ruiz, P. Subramanian, S. Ghimire-Rijal, R. A. Sinnamon, T. L. Stemmler, R. K. Bruick, C. C. Philpott, Cell Metab. 2011, 14, 647–657.PubMedGoogle Scholar
- 70.P. Haunhorst, C. Berndt, S. Eitner, J. R. Godoy, C. H. Lillig, Biochem. Biophys. Res. Commun. 2010, 394, 372–376.PubMedGoogle Scholar
- 71.H. Li, D. T. Mapolelo, S. Randeniya, M. K. Johnson, C. E. Outten, Biochemistry 2012, 51, 1687–1696.PubMedGoogle Scholar
- 72.E. C. Theil, Curr. Opin. Chem. Biol. 2011, 15, 304–311.PubMedGoogle Scholar
- 73.J. Wang, K. Pantopoulos, Biochem. J. 2011, 434, 365–381.PubMedGoogle Scholar
- 74.F. Bou-Abdallah, P. Santambrogio, S. Levi, P. Arosio, N. D. Chasteen, J. Mol. Biol. 2005, 347, 543–554.Google Scholar
- 75.P. Santambrogio, B. G. Erba, A. Campanella, A. Cozzi, V. Causarano, L. Cremonesi, A. Galli, M. G. Della Porta, R. Invernizzi, S. Levi, Haematologica 2011, 96, 1424–1432.PubMedGoogle Scholar
- 76.D. R. Richardson, D. J. Lane, E. M. Becker, M. L. Huang, M. Whitnall, Y. Suryo Rahmanto, A. D. Sheftel, P. Ponka, Proc. Natl. Acad. Sci. USA 2010, 107, 10775–10782.Google Scholar
- 77.M. L. Huang, D. J. Lane, D. R. Richardson, Antioxid. Redox Signal. 2011, 15, 3003–3019.Google Scholar
- 78.L. Li, O. S. Chen, D. McVey Ward, J. Kaplan, J. Biol. Chem. 2001, 276, 29515–29519.Google Scholar
- 79.C. C. Philpott, O. Protchenko, Eukaryot. Cell 2008, 7, 20–27.Google Scholar
- 80.A. Singh, N. Kaur, D. J. Kosman, J. Biol. Chem. 2007, 282, 28619–28626.Google Scholar
- 81.T. Kurz, J. W. Eaton, U. T. Brunk, Int. J. Biochem. Cell Biol. 2011, 43, 1686–1697.Google Scholar
- 82.P. D. Toman, G. Chisholm, H. McMullin, L. M. Giere, D. R. Olsen, R. J. Kovach, S. D. Leigh, B. E. Fong, R. Chang, G. A. Daniels, R. A. Berg, R. A. Hitzeman, J. Biol. Chem. 2000, 275, 23303–23309.Google Scholar
- 83.I. De Domenico, M. B. Vaughn, P. N. Paradkar, E. Lo, D. M. Ward, J. Kaplan, Cell Metab. 2011, 13, 57–67.PubMedGoogle Scholar
- 84.F. Missirlis, S. Kosmidis, T. Brody, M. Mavrakis, S. Holmberg, W. F. Odenwald, E. M. Skoulakis, T. A. Rouault, Genetics 2007, 177, 89–100.PubMedGoogle Scholar
- 85.A. A. Alkhateeb, J. R. Connor, Biochim. Biophys. Acta 2010, 1800, 793–797.Google Scholar
- 86.S. A. Gurgueira, R. Meneghini, J. Biol. Chem. 1996, 271, 13616–13620.Google Scholar
- 87.J. Kaplan, D. McVey Ward, R. J. Crisp, C. C. Philpott, Biochim. Biophys. Acta 2006, 1763, 646–651.Google Scholar
- 88.P. L. Blaiseau, E. Lesuisse, J. M. Camadro, J. Biol. Chem. 2001, 276, 34221–34226.Google Scholar
- 89.J. C. Rutherford, A. J. Bird, Eukaryot. Cell 2004, 3, 1–13.Google Scholar
- 90.J. C. Rutherford, S. Jaron, D. R. Winge, J. Biol. Chem. 2003, 278, 27636–27643.Google Scholar
- 91.M. Courel, S. Lallet, J. M. Camadro, P. L. Blaiseau, Mol. Cell. Biol. 2005, 25, 6760–6771.PubMedGoogle Scholar
- 92.L. Li, X. Jia, D. M. Ward, J. Kaplan, J. Biol. Chem. 2011, 286, 38488–38497.Google Scholar
- 93.L. Li, D. Bagley, D. M. Ward, J. Kaplan, Mol. Cell. Biol. 2008, 28, 1326–1337.PubMedGoogle Scholar
- 94.D. R. Winge, K. B. Nielson, W. R. Gray, D. H. Hamer, J. Biol. Chem. 1985, 260, 14464–14470.Google Scholar
- 95.X. Q. Ding, E. Bill, A. X. Trautwein, H. J. Hartmann, U. Weser, Eur. J. Biochem. 1994, 223, 841–845.PubMedGoogle Scholar
- 96.M. Mastrogiannaki, P. Matak, B. Keith, M. C. Simon, S. Vaulont, C. Peyssonnaux, J. Clin. Invest. 2009, 119, 1159–1166.Google Scholar
- 97.Y. M. Shah, T. Matsubara, S. Ito, S. H. Yim, F. J. Gonzalez, Cell Metab. 2009, 9, 152–164.PubMedGoogle Scholar
- 98.C. C. Philpott, S. Leidgens, A. G. Frey, Biochim. Biophys. Acta 2012, 1823, 1509–1520.Google Scholar
- 99.S. Puig, S. V. Vergara, D. J. Thiele, Cell Metab. 2008, 7, 555–564.PubMedGoogle Scholar
- 100.S. Puig, E. Askeland, D. J. Thiele, Cell 2005, 120, 99–110.PubMedGoogle Scholar
- 101.C. D. Kaplan, J. Kaplan, Cell Metab. 2005, 2, 4–6.PubMedGoogle Scholar
- 102.R. Yao, Z. Zhang, X. An, B. Bucci, D. L. Perlstein, J. Stubbe, M. Huang, Proc. Natl. Acad. Sci. USA 2003, 100, 6628–6633.Google Scholar
- 103.N. Sanvisens, M. C. Bano, M. Huang, S. Puig, Mol. Cell 2011, 44, 759–769.Google Scholar
- 104.S. Recalcati, G. Minotti, G. Cairo, Antioxid. Redox Signal. 2010, 13, 1593–1616.Google Scholar
- 105.T. A. Rouault, Nat. Chem. Biol. 2006, 2, 406–414.PubMedGoogle Scholar
- 106.K. Pantopoulos, Ann. N. Y. Acad. Sci. 2004, 1012, 1–13.PubMedGoogle Scholar
- 107.J. C. Rutherford, L. Ojeda, J. Balk, U. Muhlenhoff, R. Lill, D. R. Winge, J. Biol. Chem. 2005, 280, 10135–10140.Google Scholar
- 108.N. Pujol-Carrion, G. Bellí, E. Herrero, A. Nogues, M. A. de la Torre-Ruiz, J. Cell Sci. 2006, 119, 4554–4564.Google Scholar
- 109.L. Li, G. Murdock, D. Bagley, X. Jia, D. M. Ward, J. Kaplan, J. Biol. Chem. 2010, 285, 10232–10242.Google Scholar
- 110.H. Li, C. E. Outten, Biochemistry 2012, 51, 4377–4389.Google Scholar
- 111.J. Kaplan, D. M. Ward, I. De Domenico, Int. J. Hematol. 2011, 93, 14–20.PubMedGoogle Scholar
- 112.K. Gkouvatsos, G. Papanikolaou, K. Pantopoulos, Biochim. Biophys. Acta 2012, 1820, 188–202.Google Scholar
- 113.M. Sanchez, B. Galy, M. U. Muckenthaler, M. W. Hentze, Nat. Struct. Mol. Biol. 2007, 14, 420–426.PubMedGoogle Scholar
- 114.A. A. Salahudeen, J. W. Thompson, J. C. Ruiz, H. W. Ma, L. N. Kinch, Q. Li, N. V. Grishin, R. K. Bruick, Science 2009, 326, 722–726.PubMedGoogle Scholar
- 115.A. A. Vashisht, K. B. Zumbrennen, X. Huang, D. N. Powers, A. Durazo, D. Sun, N. Bhaskaran, A. Persson, M. Uhlen, O. Sangfelt, C. Spruck, E. A. Leibold, J. A. Wohlschlegel, Science 2009, 326, 718–721.PubMedGoogle Scholar