Advertisement

Sodium/Potassium Homeostasis in the Cell

  • Michael Jakob Voldsgaard Clausen
  • Hanne PoulsenEmail author
Part of the Metal Ions in Life Sciences book series (MILS, volume 12)

Abstract

All animals are characterized by steep gradients of Na+ and K+ across the plasma membrane, and in spite of their highly similar chemical properties, the ions can be distinguished by numerous channels and transporters. The gradients are generated by the Na+,K+-ATPase, or sodium pump, which pumps out Na+ and takes up K+ at the expense of the chemical energy from ATP. Because the membrane is more permeable to K+ than to Na+, the uneven ion distribution causes a transmembrane voltage difference, and this membrane potential forms the basis for the action potential and for much of the neuronal signaling in general. The potential energy stored in the concentration gradients is also used to drive a large number of the secondary transporters responsible for transmembrane carriage of solutes ranging from sugars, amino acids, and neurotransmitters to inorganic ions such as chloride, inorganic phosphate, and bicarbonate. Furthermore, Na+ and K+ themselves are important enzymatic cofactors that typically lower the energy barrier of substrate binding.

In this chapter, we describe the roles of Na+ and K+ in the animal cell with emphasis on the creation and usage of the steep gradients across the membrane. More than 50 years of Na+,K+-ATPase research has revealed many details of the molecular machinery and offered insights into how the pump is regulated by post-translational modifications and specific drugs.

Keywords

action potential ion gradients membrane potential Na+ and K+ homeostasis ouabain palytoxin renal tubular system secondary transporters sodium pump voltage-gated channels Please cite as: Met. Ions Life Sci. 12 (2013) 41–67 

Abbreviations

A-domain

actuator domain

ADP

adenosine 5’-diphosphate

AMPA

2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid

ATP

adenosine 5’-triphosphate

CCCs

cation-chloride co-transporters

CNS

central nervous system

EAATs

excitatory amino acid transporters

ER

endoplasmic reticulum

FHM2

familial hemeplegic migraine 2

GABA

γ-aminobutyric acid

GLUTs

glucose transporters

KCCs

K+-coupled Cl exporters

Kv

voltage-gated K+ channels

LD50

lethal dose, 50%

LeuT

leucine transporter

nAchR

nicotinic acetylcholine receptor

NaPi

Na+-coupled Pi symporter

Nav

voltage-gated Na+ channels

Nax

subfamily of voltage-gated sodium channels (formerly Nav2.1 in humans)

NCBTs

sodium-coupled bicarbonate transporters

NCCs

Na+-coupled Cl importers

N-domain

nucleotide-binding domain

NHEs

Na+-coupled H+ exporters

NKCCs

Na+-coupled K+ and Cl importers

NSSs

neurotransmitter sodium symporters

P-domain

phosphorylation domain

Pi

inorganic phosphate

PKA

protein kinase A

PKC

protein kinase C

RDP

rapid-onset dystonia parkinsonism

SGLTs

sodium-dependent glucose transporters

SSRIs

selective serotonin re-uptake inhibitors

TMs

transmembrane helices

Notes

Acknowledgments

We are grateful to Poul Nissen for advice and support. MJC and HP were funded by the Danish National Research Center PUMPKIN and HP by The Lundbeck Foundation, The Carlsberg Foundation, and L’Oréal/UNESCO.

References

  1. 1.
    C. McCaig, A. Rajnicek, B. Song, M. Zhao, Physiol. Rev. 2005, 85, 943–1021.PubMedCrossRefGoogle Scholar
  2. 2.
    E. Overton, Pflügers Arch. 1902, 92, 346–386.CrossRefGoogle Scholar
  3. 3.
    T. Danowski, J. Biol. Chem. 1941, 139, 693–705.Google Scholar
  4. 4.
    J. Harris, J. Biol. Chem. 1941, 141, 579–595.Google Scholar
  5. 5.
    H. Schatzmann, Helv. Physiol. Pharmacol. Acta 1953, 11, 346–400.Google Scholar
  6. 6.
    R. Post, P. Jolly, Biochim. Biophys. Acta 1957, 25, 118–146.CrossRefGoogle Scholar
  7. 7.
    J. Skou, Biochim. Biophys. Acta 1957, 23, 394–795.CrossRefGoogle Scholar
  8. 8.
    A. Mulkidjanian, A. Bychkov, D. Dibrova, M. Galperin, E. Koonin, Proc. Nat. Acad. Sci. USA 2012, 109, 30.CrossRefGoogle Scholar
  9. 9.
    D. Madern, C. Ebel, G. Zaccai, Extremophiles: Life under Extreme Conditions 2000, 4, 91–99.CrossRefGoogle Scholar
  10. 10.
    P. Yancey, J. Exper. Biol. 2005, 208, 2819–2849.Google Scholar
  11. 11.
    R. Vreeland, Crit. Rev. Microbiol. 1987, 14, 311–367.PubMedCrossRefGoogle Scholar
  12. 12.
    S. Kennedy, W. Ng, S. Salzberg, L. Hood, S. DasSarma, Genome Res. 2001, 11, 1641–1691.PubMedCrossRefGoogle Scholar
  13. 13.
    K. Collins, Biophys. J. 1997, 72, 65–141.PubMedCrossRefGoogle Scholar
  14. 14.
    D. Doyle, J. Morais Cabral, R. Pfuetzner, A. Kuo, J. Gulbis, S. Cohen, B. Chait, R. MacKinnon, Science 1998, 280, 69–146.PubMedCrossRefGoogle Scholar
  15. 15.
    D. Hall, C. Bond, G. Leonard, C. Watt, A. Berry, W. Hunter, J. Biol. Chem. 2002, 277, 22018–22042.Google Scholar
  16. 16.
    M. Page, E. Di Cera, Physiol. Rev. 2006, 86, 1049–1141.PubMedCrossRefGoogle Scholar
  17. 17.
    N. Shibata, J. Masuda, T. Tobimatsu, T. Toraya, K. Suto, Y. Morimoto, N. Yasuoka, Structure 1999, 7, 997–2005.PubMedCrossRefGoogle Scholar
  18. 18.
    E. Wilkens, A. Ringel, D. Hortig, T. Willke, K.-D. Vorlop, Appl. Microbiol. Biotechnol. 2012, 93, 1057–1120.PubMedCrossRefGoogle Scholar
  19. 19.
    T. Larsen, M. Benning, I. Rayment, G. Reed, Biochemistry 1998, 37, 6247–6302.PubMedCrossRefGoogle Scholar
  20. 20.
    M. Toney, E. Hohenester, J. Keller, J. Jansonius, J. Mol. Biol. 1995, 245, 151–230.Google Scholar
  21. 21.
    A. Pineda, C. Carrell, L. Bush, S. Prasad, S. Caccia, Z.-W. Chen, F. Mathews, E. Di Cera, J. Biol. Chem. 2004, 279, 31842–31895.Google Scholar
  22. 22.
    S. Brohawn, J. del Mármol, R. MacKinnon, Science 2012, 335, 436–477.PubMedCrossRefGoogle Scholar
  23. 23.
    A. Miller, S. Long, Science 2012, 335, 432–438.PubMedCrossRefGoogle Scholar
  24. 24.
    K. Svoboda, D. Tank, W. Denk, Science 1996, 272, 716–725.PubMedCrossRefGoogle Scholar
  25. 25.
    C. Rose, A. Konnerth, J. Neurosci. 2001, 21, 4207–4221.PubMedGoogle Scholar
  26. 26.
    J. Kim, I. Sizov, M. Dobretsov, H. von Gersdorff, Nature Neuroscience 2007, 10, 196–401.PubMedCrossRefGoogle Scholar
  27. 27.
    S. Pulver, L. Griffith, Nature Neuroscience 2010, 13, 53–62.PubMedCrossRefGoogle Scholar
  28. 28.
    A. Chakrabarti, D. Deamer, Biochim. Biophys. Acta 1992, 1111, 171–178.CrossRefGoogle Scholar
  29. 29.
    M. Roux, S. Supplisson, Neuron 2000, 25, 373–456.PubMedCrossRefGoogle Scholar
  30. 30.
    M. Hahn, R. Blakely, Pharmacogenomics J. 2002, 2, 217–252.PubMedCrossRefGoogle Scholar
  31. 31.
    N. Zerangue, M. Kavanaugh, Nature 1996, 383, 634–641.PubMedCrossRefGoogle Scholar
  32. 32.
    S. Lachheb, F. Cluzeaud, M. Bens, M. Genete, H. Hibino, S. Lourdel, Y. Kurachi, A. Vandewalle, J. Teulon, M. Paulais, Am. J. Physiology. Renal Physiology 2008, 294, 407.Google Scholar
  33. 33.
    P. Welling, K. Ho, Am. J. Physiology. Renal Physiology 2009, 297, 63.CrossRefGoogle Scholar
  34. 34.
    S. Adibi, S. Gray, E. Menden, Am. J. Clin. Nutrition 1967, 20, 24–57.Google Scholar
  35. 35.
    S. Bröer, Physiol. Rev. 2008, 88, 249–335.PubMedCrossRefGoogle Scholar
  36. 36.
    E. Wright, D. Loo, B. Hirayama, Physiol. Rev. 2011, 91, 733–827.PubMedCrossRefGoogle Scholar
  37. 37.
    H. Krishnamurthy, E. Gouaux, Nature 2012, 481, 469–543.PubMedCrossRefGoogle Scholar
  38. 38.
    A. Yamashita, S. Singh, T. Kawate, Y. Jin, E. Gouaux, Nature 2005, 437, 215–238.PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Zhao, M. Quick, L. Shi, E. Mehler, H. Weinstein, J. Javitch, Nature Chem. Biol. 2010, 6, 109–125.Google Scholar
  40. 40.
    L. Forrest, R. Krämer, C. Ziegler, Biochim. Biophys. Acta 2011, 1807, 167–255.CrossRefGoogle Scholar
  41. 41.
    F. Lang, G. Busch, H. Völkl, Cell. Physiol. Biochem.: Int. J. Exper. Cell. Physiol., Biochem., Pharmacol. 1998, 8, 1–46.Google Scholar
  42. 42.
    C. Lytle, J. Biol. Chem. 1997, 272, 15069–15146.Google Scholar
  43. 43.
    J. Russell, Physiol. Rev. 2000, 80, 211–287.PubMedGoogle Scholar
  44. 44.
    T. Zeuthen, N. Macaulay, J. Physiol. 2012, 590, 1139–1193.PubMedGoogle Scholar
  45. 45.
    P. Dunham, G. Stewart, J. Ellory, Proc. Nat. Acad. Sci. USA 1980, 77, 1711–1716.CrossRefGoogle Scholar
  46. 46.
    G. Gamba, Physiol. Rev. 2005, 85, 423–516.PubMedCrossRefGoogle Scholar
  47. 47.
    K. Kahle, J. Rinehart, A. Ring, I. Gimenez, G. Gamba, S. Hebert, R. Lifton, Physiology 2006, 21, 326–361.PubMedCrossRefGoogle Scholar
  48. 48.
    A. Alizadeh Naderi, R. Reilly, Nature Rev. Nephrology 2010, 6, 657–722.PubMedGoogle Scholar
  49. 49.
    I. Forster, N. Hernando, J. Biber, H. Murer, Kidney Int. 2006, 70, 1548–1607.PubMedCrossRefGoogle Scholar
  50. 50.
    W. Boron, J. Am. Soc. Nephrol.: JASN 2006, 17, 2368–2450.Google Scholar
  51. 51.
    I. Choi, H. Soo Yang, W. Boron, J. Physiol. 2007, 578, 131–173.PubMedCrossRefGoogle Scholar
  52. 52.
    S. Hebert, D. Mount, G. Gamba, Pflügers Arch.: Eur. J. Physiol. 2004, 447, 580–673.Google Scholar
  53. 53.
    K. Hinchcliff, P. Morley, A. Guthrie, J. Am. Vet. Med. Assoc. 2009, 235, 76–158.PubMedCrossRefGoogle Scholar
  54. 54.
    J. Kyte, J. Biol. Chem. 1971, 246, 4157–4222.Google Scholar
  55. 55.
    E. Cayanis, H. Bayley, I. Edelman, J. Biol. Chem. 1990, 265, 10829–10864.Google Scholar
  56. 56.
    K. Geering, FEBS Lett. 1991, 285, 189–282.PubMedCrossRefGoogle Scholar
  57. 57.
    K. Geering, J. Kraehenbuhl, B. Rossier, J. Cell Biol. 1987, 105, 2613–2622.PubMedCrossRefGoogle Scholar
  58. 58.
    G. Crambert, K. Geering, Science’s STKE: Signal Transduction Knowledge Environment 2003, 2003.Google Scholar
  59. 59.
    K. McGrail, J. Phillips, K. Sweadner, J. Neurosci. 1991, 11, 381–472.PubMedGoogle Scholar
  60. 60.
    P. Bøttger, Z. Tracz, A. Heuck, P. Nissen, M. Romero-Ramos, K. Lykke-Hartmann, J. Compar. Neurol. 2011, 519, 376-780.Google Scholar
  61. 61.
    P. Lucchesi, K. Sweadner, J. Biol. Chem. 1991, 266, 9327–9358.Google Scholar
  62. 62.
    J. F. Hoffman, Proc. Nat. Acad. Sci. USA 2002, 99.Google Scholar
  63. 63.
    J. Hlivko, S. Chakraborty, T. Hlivko, A. Sengupta, P. James, Mol. Reprod. Devel. 2006, 73, 101–116.PubMedCrossRefGoogle Scholar
  64. 64.
    A. Woo, P. James, J. Lingrel, J. Membr. Biol. 1999, 169, 39–83.Google Scholar
  65. 65.
    G. Blanco, Seminars in Nephrology 2005, 25, 292–595.PubMedCrossRefGoogle Scholar
  66. 66.
    P. L. Pedersen, E. Carafoli, Trends Biochem. Sci., 1987 , 12, 146–296.Google Scholar
  67. 67.
    M. Palmgren, P. Nissen, Annu. Rev. Biophys. 2011, 40, 243–309.PubMedCrossRefGoogle Scholar
  68. 68.
    O. Vagin, L. Dada, E. Tokhtaeva, G. Sachs, Am. J. physiol. Cell Physiol. 2012.Google Scholar
  69. 69.
    R. Albers, Annu. Rev. Biochem. 1967, 36, 727–783.PubMedCrossRefGoogle Scholar
  70. 70.
    R. Post, S. Kume, T. Tobin, B. Orcutt, A. Sen, J. Gen. Physiol. 1969, 54, 306–332.Google Scholar
  71. 71.
    J. Morth, B. Pedersen, M. Toustrup-Jensen, T. Sørensen, J. Petersen, J. Andersen, B. Vilsen, P. Nissen, Nature 2007, 450, 1043–1052.PubMedCrossRefGoogle Scholar
  72. 72.
    T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Nature 2009, 459, 446–496.PubMedCrossRefGoogle Scholar
  73. 73.
    C. Olesen, M. Picard, A.-M. L. Winther, C. Gyrup, J. Morth, C. Oxvig, J. Møller, P. Nissen, Nature 2007, 450, 1036–1078.PubMedCrossRefGoogle Scholar
  74. 74.
    C. Olesen, T. Sørensen, R. Nielsen, J. Møller, P. Nissen, Science 2004, 306, 2251–2256.PubMedCrossRefGoogle Scholar
  75. 75.
    T. Sørensen, J. Clausen, A.-M. L. Jensen, B. Vilsen, J. Møller, J. Andersen, P. Nissen, J. Biol. Chem. 2004, 279, 46355–46363.Google Scholar
  76. 76.
    C. Toyoshima, T. Mizutani, Nature 2004, 430, 529–564.PubMedCrossRefGoogle Scholar
  77. 77.
    C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Nature 2000, 405, 647–702.PubMedCrossRefGoogle Scholar
  78. 78.
    C. Toyoshima, H. Nomura, Nature 2002, 418, 605–616.PubMedCrossRefGoogle Scholar
  79. 79.
    C. Toyoshima, H. Nomura, T. Tsuda, Nature 2004, 432, 361–369.PubMedCrossRefGoogle Scholar
  80. 80.
    R. Rakowski, D. Gadsby, P. De Weer, J. Gen. Physiol. 1989, 93, 903–944.Google Scholar
  81. 81.
    S. Despa, J. Bossuyt, F. Han, K. Ginsburg, L.-G. Jia, H. Kutchai, A. Tucker, D. Bers, Circulat. Res. 2005, 97, 252–261.PubMedCrossRefGoogle Scholar
  82. 82.
    C. Palmer, B. Scott, L. Jones, J. Biol. Chem. 1991, 266, 11126–11156.Google Scholar
  83. 83.
    H. Poulsen, P. Morth, J. Egebjerg, P. Nissen, FEBS Lett. 2010, 584, 2589–2684.PubMedCrossRefGoogle Scholar
  84. 84.
    Z.-Q. Wu, J. Chen, Z.-Q. Chi, J.-G. Liu, Mol. Pharmacol. 2007, 71, 519–549.PubMedCrossRefGoogle Scholar
  85. 85.
    H. Rasmussen, E. Hamilton, C.-C. Liu, G. Figtree, Trends Cardiovasc. Med. 2010, 20, 85–175.Google Scholar
  86. 86.
    S. Bibert, C.-C. Liu, G. Figtree, A. Garcia, E. Hamilton, F. Marassi, K. Sweadner, F. Cornelius, K. Geering, H. Rasmussen, J. Biol. Chem. 2011, 286, 18562–18634.Google Scholar
  87. 87.
    D. Alves, G. Farr, P. Seo-Mayer, M. Caplan, Molecul. Biol. Cell 2010, 21, 4400–4408.Google Scholar
  88. 88.
    H. Blom, D. Rönnlund, L. Scott, Z. Spicarova, J. Widengren, A. Bondar, A. Aperia, H. Brismar, BMC Neuroscience 2011, 12, 16.PubMedCrossRefGoogle Scholar
  89. 89.
    H. Shimizu, E. Watanabe, T. Hiyama, A. Nagakura, A. Fujikawa, H. Okado, Y. Yanagawa, K. Obata, M. Noda, Neuron 2007, 54, 59–131.PubMedCrossRefGoogle Scholar
  90. 90.
    S. Santos, B. Manadas, C. Duarte, A. Carvalho, J. Proteome Res. 2010, 9, 1670–1752.PubMedCrossRefGoogle Scholar
  91. 91.
    D. Zhang, Q. Hou, M. Wang, A. Lin, L. Jarzylo, A. Navis, A. Raissi, F. Liu, H.-Y. Man, J. Neuroscience 2009, 29, 4498–5009.CrossRefGoogle Scholar
  92. 92.
    J. Heiny, V. Kravtsova, F. Mandel, T. Radzyukevich, B. Benziane, A. Prokofiev, S. Pedersen, A. Chibalin, I. Krivoi, J. Biol. Chem. 2010, 285, 28614–28640.Google Scholar
  93. 93.
    M. Doi, K. Iwasaki, Mol. Cell. Neurosci. 2008, 38, 548–606.PubMedCrossRefGoogle Scholar
  94. 94.
    B. Cassels, J. Ethnopharmacol. 1985, 14, 273–354.PubMedCrossRefGoogle Scholar
  95. 95.
    D. Watt, J. Simard, P. Mancuso, Comp. Biochem. Physiol. A, Comp. Physiol. 1982, 71, 375–457.Google Scholar
  96. 96.
    S. Zhan, C. Merlin, J. Boore, S. Reppert, Cell 2011, 147, 1171–1256.PubMedCrossRefGoogle Scholar
  97. 97.
    E. Labeyrie, S. Dobler, Mol. Biol. Evolut. 2004, 21, 218–239.CrossRefGoogle Scholar
  98. 98.
    Z. Li, Z. Xie, Pflügers Arch.: Eur. J. Physiol. 2009, 457, 635–679.Google Scholar
  99. 99.
    D. Hilgemann, Proc. Nat. Acad. Sci. USA 2003, 100, 386–394.CrossRefGoogle Scholar
  100. 100.
    M. De Fusco, R. Marconi, L. Silvestri, L. Atorino, L. Rampoldi, L. Morgante, A. Ballabio, P. Aridon, G. Casari, Nature Genetics 2003, 33, 192–198.PubMedCrossRefGoogle Scholar
  101. 101.
    P. de Carvalho Aguiar, K. Sweadner, J. Penniston, J. Zaremba, L. Liu, M. Caton, G. Linazasoro, M. Borg, M. Tijssen, S. Bressman, W. Dobyns, A. Brashear, L. Ozelius, Neuron 2004, 43, 169–244.PubMedCrossRefGoogle Scholar
  102. 102.
    P. Bøttger, C. Doğanlı, K. Lykke-Hartmann, Neurosci. Biobehav. Rev. 2012, 36, 855–926.PubMedCrossRefGoogle Scholar
  103. 103.
    K. Axelsen, M. Palmgren, J. Mol. Evolut. 1998, 46, 84–185.CrossRefGoogle Scholar
  104. 104.
    H. Poulsen, H. Khandelia, J. Morth, M. Bublitz, O. Mouritsen, J. Egebjerg, P. Nissen, Nature 2010, 467, 99–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Michael Jakob Voldsgaard Clausen
    • 1
  • Hanne Poulsen
    • 1
    Email author
  1. 1.Centre for Structural Biology, Department of Molecular Biology and GeneticsUniversity of AarhusAarhus CDenmark

Personalised recommendations