Technologies for Detecting Metals in Single Cells

Part of the Metal Ions in Life Sciences book series (MILS, volume 12)


In order to fully understand the metallomics of an organism, it is essential to know how much metal is present in each cell and, ideally, to know both the spatial and chemical distributions of each metal (i.e., where within the cell is a metal found, and in what chemical form). No single technique provides all of this information. This chapter reviews the various methods that can be used and the strengths and weaknesses of each.


fluorophore laser ablation mass spectrometry nanoprobe PIXE secondary ion SIMS X-ray fluorescence Please cite as: Met. Ions Life Sci. 12 (2013) 15–40 

Abbreviations and Definitions


electron dispersive spectroscopy


electron energy loss spectroscopy


electron probe microanalysis


electrospray ionization


Förster resonance energy transfer


inductively coupled plasma




mass spectrometry


matrix-assisted laser desorption/ionization


magnetic resonance imaging


proton induced X-ray emission (sometimes particle instead of proton)


secondary electron


secondary ion mass spectrometry


synchrotron induced X-ray fluorescence




X-ray absorption near edge structure


X-ray absorption spectroscopy


X-ray fluorescence microscopy


X-ray fluorescence



  Some of the measurements described in this chapter were supported by the National Institutes of Health, Grants GM-38047 and GM-70545. The XRF imaging work that was described was all measured at one or more national synchrotron laboratories, much of it at laboratories supported by the US Department of Energy Office of Science.


  1. 1.
    A. I. Vogel, A Text-Book of Macro and Semimicro Qualitative Inorganic Analysis, Longmans, Green, London, New York, 1954, pp. xv, 663 p.Google Scholar
  2. 2.
    R. McRae, P. Bagchi, S. Sumalekshmy, C. J. Fahrni, Chem. Rev. 2009, 109, 4780–4827.CrossRefPubMedGoogle Scholar
  3. 3.
    J. L. Nielsen, P. H. Nielsen, in Environ. Microbiol., Vol. 397 of Methods in Enzymology, Ed J. R. Leadbetter, Elsevier Academic Press, Inc., San Diego, CA, 2005, pp. 237–256.Google Scholar
  4. 4.
    B. F. Brehm-Stecher, E. A. Johnson, Microbiol. Mol. Biol. Rev. 2004, 68, 538–559.CrossRefPubMedGoogle Scholar
  5. 5.
    A. Amantonico, P. L. Urban, R. Zenobi, Anal. Bioanal. Chem. 2010, 398, 2493–2504.CrossRefPubMedGoogle Scholar
  6. 6.
    A. Oikawa, K. Saito, Plant J. 2012, 70, 30–38.CrossRefPubMedGoogle Scholar
  7. 7.
    H. Plattner, L. Bachmann, International Review of Cytology-a Survey of Cell Biology 1982, 79, 237–304.CrossRefGoogle Scholar
  8. 8.
    K. Zierold, J. Microscopy 1991, 161, 357–366.CrossRefGoogle Scholar
  9. 9.
    S. G. Boxer, M. L. Kraft, P. K. Weber, Annu. Rev. Biophys. 2009, 38, 53–74.CrossRefPubMedGoogle Scholar
  10. 10.
    P. Nemes, A. Vertes, TRAC-Trends. Anal. Chem. 2012, 34, 22–34.CrossRefGoogle Scholar
  11. 11.
    Z. Y. Qin, J. A. Caruso, B. Lai, A. Matusch, J. S. Becker, Metallomics 2011, 3, 28–37.CrossRefPubMedGoogle Scholar
  12. 12.
    J. S. Hammond, in Imaging Mass Spectrometry: Protocols for Mass Microscopy, Ed M. Setou, Springer, 2010, pp. 235–257.Google Scholar
  13. 13.
    B. Wu, J. S. Becker, Intl. J. Mass. Spect. 2011, 307, 112–122.CrossRefGoogle Scholar
  14. 14.
    S. L. Luxembourg, T. H. Mize, L. A. McDonnell, R. M. A. Heeren, Anal. Chem. 2004, 76, 5339–5344.CrossRefPubMedGoogle Scholar
  15. 15.
    H. Ye, T. Greer, L. J. Li, Bioanalysis 2011, 3, 313–332.CrossRefPubMedGoogle Scholar
  16. 16.
    J. S. Fletcher, J. C. Vickerman, N. Winograd, Curr. Opin. Chem. Biol. 2011, 15, 733–740.CrossRefPubMedGoogle Scholar
  17. 17.
    J. S. Becker, A. Matusch, B. Wu, C. Palm, A. J. Becker, D. Salber, Intl. J. Mass. Spect. 2011, 307, 3–15.CrossRefGoogle Scholar
  18. 18.
    T. A. Zimmerman, E. B. Monroe, K. R. Tucker, S. S. Rubakhin, J. V. Sweedler, in Biophysical Tools for Biologists, Vol 2: In Vivo Techniques, Eds J. J. Correia. H. W. Detrich, Methods in Cell Biology, Elsevier Academic Press, Inc., San Diego, CA, 2008, Vol. 89, pp. 361–390.Google Scholar
  19. 19.
    C. Szakal, K. Narayan, J. Fu, J. Lefman, S. Subramaniam, Anal. Chem. 2011, 83, 1207–1213.CrossRefPubMedGoogle Scholar
  20. 20.
    P. K. Weber, G. A. Graham, N. E. Teslich, W. M. Chan, S. Ghosal, T. J. Leighton, K. E. Wheeler, J. Microscopy 2010, 238, 189–199.CrossRefGoogle Scholar
  21. 21.
    A. Svatos, Anal. Chem. 2011, 83, 5037–5044.CrossRefPubMedGoogle Scholar
  22. 22.
    P. L. Urban, T. Schmid, A. Amantonico, R. Zenobi, Anal. Chem. 2011, 83, 1843–1849.CrossRefPubMedGoogle Scholar
  23. 23.
    A. Amantonico, P. L. Urban, S. R. Fagerer, R. M. Balabin, R. Zenobi, Anal. Chem. 2010, 82, 7394–7400.CrossRefPubMedGoogle Scholar
  24. 24.
    H. Mizuno, N. Tsuyama, T. Harada, T. Masujima, J. Mass Spectrom. 2008, 43, 1692–1700.CrossRefPubMedGoogle Scholar
  25. 25.
    B. Shrestha, J. M. Patt, A. Vertes, Anal. Chem. 2011, 83, 2947–2955.CrossRefPubMedGoogle Scholar
  26. 26.
    N. Musat, H. Halm, B. Winterholler, P. Hoppe, S. Peduzzi, F. Hillion, F. Horreard, R. Amann, B. B. Jorgensen, M. M. M. Kuypers, Proc. Natl. Acad. Sci USA 2008, 105, 17861–17866.CrossRefGoogle Scholar
  27. 27.
    T. Li, T.-D. Wu, L. Mazeas, L. Toffin, J.-L. Guerquin-Kern, G. Leblon, T. Bouchez, Environ. Microbiol. 2008, 10, 580–588.CrossRefPubMedGoogle Scholar
  28. 28.
    S. D. Tanner, D. R. Bandura, O. Ornatsky, V. I. Baranov, M. Nitz, M. A. Winnik, Pure Appl. Chem. 2008, 80, 2627–2641.Google Scholar
  29. 29.
    K. E. Smart, M. R. Kilburn, C. J. Salter, J. A. C. Smith, C. R. M. Grovenor, Intl. J. Mass. Spect. 2007, 260, 107–114.CrossRefGoogle Scholar
  30. 30.
    S. W. Hell, Science 2007, 316, 1153–1158.CrossRefPubMedGoogle Scholar
  31. 31.
    T. Terai, T. Nagano, Curr. Opin. Chem. Biol. 2008, 12, 515–521.CrossRefPubMedGoogle Scholar
  32. 32.
    D. W. Domaille, E. L. Que, C. J. Chang, Nature Chem. Biol. 2008, 4, 168–175.Google Scholar
  33. 33.
    P. J. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205–229.CrossRefGoogle Scholar
  34. 34.
    M. Formica, V. Fusi, L. Giorgi, M. Micheloni, Coord. Chem. Rev. 2012, 256, 170–192.CrossRefGoogle Scholar
  35. 35.
    N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172.CrossRefPubMedGoogle Scholar
  36. 36.
    D. O’Malley, in Biophysical Tools for Biologists, Vol 2: In Vivo Techniques, Eds. J. J. Correia, H. W. Detrich, Methods in Cell Biology, Elsevier Academic Press, Inc., San Diego, CA, Vol. 89, 2008, pp. 95.Google Scholar
  37. 37.
    K. M. Dean, Y. Qin, A. E. Palmer, Biochim. Biophys. Acta 2012, doi:10.1016/j.bbamcr.2012.1004.1001.Google Scholar
  38. 38.
    J. R. Lakowicz, Anal. Biochem. 2001, 298, 1–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Y. You, S. Lee, T. Kim, K. Ohkubo, W.-S. Chae, S. Fukuzumi, G.-J. Jhon, W. Nam, S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 18328–18342.CrossRefPubMedGoogle Scholar
  40. 40.
    A. Krezel, W. Maret, J. Biol. Inorg. Chem. 2006, 11, 1049–1062.CrossRefPubMedGoogle Scholar
  41. 41.
    R. Y. Tsien, Nature 1981, 290, 527–528.CrossRefPubMedGoogle Scholar
  42. 42.
    C. A. Fierke, R. B. Thompson, Biometals 2001, 14, 205–222.CrossRefPubMedGoogle Scholar
  43. 43.
    D. Wang, T. K. Hurst, R. B. Thompson, C. A. Fierke, J. Biomed. Optics 2011, 16, Scholar
  44. 44.
    E. M. W. M. van Dongen, L. M. Dekkers, K. Spijker, E. W. Meijer, L. W. J. Klomp, M. Merkx, J. Am. Chem. Soc. 2006, 128, 10754–10762.CrossRefPubMedGoogle Scholar
  45. 45.
    P. J. Dittmer, J. G. Miranda, J. A. Gorski, A. E. Palmer, J. Biol. Chem. 2009, 284, 16289–16297.Google Scholar
  46. 46.
    W. Qiao, M. Mooney, A. J. Bird, D. R. Winge, D. J. Eide, Proc. Natl. Acad. Sci USA 2006, 103, 8674–8679.CrossRefGoogle Scholar
  47. 47.
    J. L. Vinkenborg, T. J. Nicolson, E. A. Bellomo, M. S. Koay, G. A. Rutter, M. Merkx, Nature Methods 2009, 6, 737–U710.CrossRefPubMedGoogle Scholar
  48. 48.
    W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73–76.CrossRefPubMedGoogle Scholar
  49. 49.
    H. M. Kim, B. R. Cho, Acc. Chem. Res. 2009, 42, 863–872.CrossRefPubMedGoogle Scholar
  50. 50.
    N. Johnsson, K. Johnsson, ACS Chem. Biol. 2007, 2, 31–38.Google Scholar
  51. 51.
    M. Cholewa, C. Dillon, P. Lay, D. Phillips, T. Talarico, B. Lai, D. X. Balaic, Z. Barnea, Z. Cai, G. B. Deacon, P. Ilinski, D. Legnini, S. Rainone, G. Shea-McCarthy, A. P. J. Stampfi, L. K. Webster, W. Yun, Nucl. Instrum. Methods. B. 2002, 198, 108–109.CrossRefGoogle Scholar
  52. 52.
    R. Ortega, G. Deves, A. Carmona, J. Royal Soc. Interface 2009, 6, S649–S658.CrossRefPubMedGoogle Scholar
  53. 53.
    M. Ralle, S. Lutsenko, Biometals 2009, 22, 197–205.CrossRefPubMedGoogle Scholar
  54. 54.
    P. Duhutrel, C. Bordat, T. D. Wu, M. Zagorec, J. L. Guerquin-Kern, M. C. Champomier-Verges, Appl. Environ. Microbiol. 2010, 76, 560–565.CrossRefPubMedGoogle Scholar
  55. 55.
    R. Ortega, P. Cloetens, G. Deves, A. Carmona, S. Bohic, PLOS One 2007, 2.Google Scholar
  56. 56.
    E. Kosior, S. Bohic, H. Suhonen, R. Ortega, G. Deves, A. Carmona, F. Marchi, J. F. Guillet, P. Cloetens, J. Struct. Biol. 2012, 177, 239–247.Google Scholar
  57. 57.
    E. H. Bigio, T. Paunesku, M. Mishra, S. Vogt, B. Lai, J. Maser, G. E. Woloschak, “X-ray fluorescence spectroscopy in situ quantification of metals/elements in Alzheimer disease”, Proceedings of the 81st Annual Meeting of the American-Association-of-Neuropathologists, Arlington, VA, 2005, pp. 48.Google Scholar
  58. 58.
    T. Paunesku, S. Vogt, J. Maser, B. Lai, G. Woloschak, J. Cell. Biochem. 2006, 99, 1489–1502.Google Scholar
  59. 59.
    S. Vogt, B. Lai, L. Finney, B. Palmer, L. E. Wu, H. Harris, T. Paunesku, M. de Jonge, D. Legnini, J. Maser, D. Glesne, P. Lay, G. Woloschak, Microscop. Microanal. 2007, 13, 40–41.Google Scholar
  60. 60.
    A. M. Kim, M. L. Bernhardt, B. Y. Kong, R. W. Ahn, S. Vogt, T. K. Woodruff, T. V. O’Halloran, ACS Chem. Biol. 2011, 6, 716–723.Google Scholar
  61. 61.
    S. A. Kim, T. Punshon, A. Lanzirotti, L. Li, J. M. Alonso, J. R. Ecker, J. Kaplan, M. L. Guerinot, Science 2006, 314, 1295–1298.CrossRefPubMedGoogle Scholar
  62. 62.
    S. Kehr, M. Malinouski, L. Finney, S. Vogt, V. M. Labunskyy, M. V. Kasaikina, B. A. Carlson, Y. Zhou, D. L. Hatfield, V. N. Gladyshev, J. Mol. Biol. 2009, 389, 808–818.Google Scholar
  63. 63.
    R. Ortega, C. Bresson, A. Fraysse, C. Sandre, G. Devès, C. Gombert, M. Tabarant, P. Bleuet, H. Seznec, A. Simionovici, P. Moretto, C. Moulin, Toxicol. Lett. 2009, 188, 26–32.CrossRefPubMedGoogle Scholar
  64. 64.
    I. J. Pickering, E. Y. Sneeden, R. C. Prince, E. Block, H. H. Harris, G. Hirsch, G. N. George, Biochemistry 2009, 48, 6846–6853.CrossRefPubMedGoogle Scholar
  65. 65.
    I. J. Pickering, R. C. Prince, D. E. Salt, G. N. George, Proc. Natl. Acad. Sci USA 2000, 97, 10717–10722.CrossRefGoogle Scholar
  66. 66.
    R. Ortega, B. Fayard, M. Salomé, G. Devès, J. Susini, Chem. Res. Toxicol. 2005, 18, 1512–1519.CrossRefPubMedGoogle Scholar
  67. 67.
    T. Bacquart, G. Devès, A. Carmona, R. Tucoulou, S. Bohic, R. Ortega, Anal. Chem. 2007, 79, 7353–7359.CrossRefPubMedGoogle Scholar
  68. 68.
    K. E. Smart, J. A. C. Smith, M. R. Kilburn, B. G. H. Martin, C. Hawes, C. R. M. Grovenor, Plant J. 2010, 63, 870–879.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Departments of Chemistry and BiophysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations