Rational Design of Single-Molecule Magnets

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Single-molecule magnets possess a superior property in comparison to other polynuclear but only paramagnetic transition metal complexes: single-molecule magnets can be magnetized and they remain magnetized, even in the absence of an external magnetic field. They exhibit a hysteresis in the magnetization in analogy to the well-established solid-state magnets. Due to these promising properties, single-molecule magnets have attracted a great deal of research. However, the key property, the blocking temperature, has not been increased since the discovery of the first single-molecule magnet Mn 12 . A reason for this failure may be found in the prevalence of serendipitous approaches to new single-molecule magnets: metal ions and small ligands are reacted in the hope to obtain a new single-molecule magnet. The massive characterization of Mn 12 has shed light on necessary requirements for a polynuclear transition metal complex to behave as a single-molecule magnet. Besides the usually accepted two requirements (i.e. a high spin ground state and a magnetic anisotropy), a control of the molecular topology seems to be highly demanded. In order to reduce the tunneling through the anisotropy barrier, the rhombicity of the spin ground state should be close to zero. This requires at least a molecular C 3 symmetry. Additionally, the overall metal ion arrangement should be lower than a cubic. Otherwise, the local magnetic anisotropies cancel each other by projecting onto the spin ground state. We have performed a ligand design in accordance to the above given requirements, which will be presented here. The triplesalen ligand combines the phloroglucinol bridging unit for high spin ground state and a salen like coordination environment for local magnetic anisotropies. In addition, this ligand is C 3 symmetric and imposes a C 3 symmetry on its complexes. The first example of a rationally designed single-molecule magnet, Mn 6 Cr 3+ , will be described in some detail.

Keywords

Magnetic Anisotropy Prussian Blue Spin Ground State Salen Ligand Molecular Building Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I gratefully acknowledge financial support from the Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, dem Bundesministerium für Bildung und Forschung, der Dr. Otto Röhm Gedächtnisstiftung as well as the universities of Münster and Bielefeld. I deeply appreciate the fundamental work of one of my first co-workers, Dr. Maik Heidemeier, who started this project and who did all the syntheses described herein. Additionally, I am very thankful to my collaborators and friends to this project: Dr. Eckhard Bill, Dr. Thomas Weyhermüller (both MPI for Bioinorganic Chemistry), Prof. Paul Müller (University of Nürnberg/Erlangen), and Dr. Rolf-Dieter Hoffmann (University of Münster).

References

  1. 1.
    Gatteschi D, Kahn O, Miller JS, Palacio F (eds) (1991) Magnetic molecular materials, vol 198, NATO ASI Series, Series E: Appl. Sciences. Kluwer Acad. Publ, DordrechtGoogle Scholar
  2. 2.
    Miller JS, Epstein AJ (1994) Angew Chem Int Ed Engl 33:385–415CrossRefGoogle Scholar
  3. 3.
    Coronado E, Delhaès P, Gatteschi D, Miller JS (eds) (1996) Molecular magnetism: from molecular assemblies to the devices, vol 321, NATO ASI Series, Series E: Applied Sciences. Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. 4.
    Miller JS, Drillon M (2001–2005) Magnetism: molecules to materials, vol I-V. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  5. 5.
    Miller JS (2000) Inorg Chem 39:4392–4408CrossRefGoogle Scholar
  6. 6.
    Miller JS, Krusic PJ, Epstein AJ, Reiff WM, Zhang JH (1985) Mol Cryst Liq Cryst 120:27–34CrossRefGoogle Scholar
  7. 7.
    Miller JS, Calabrese JC, Epstein AJ, Bigelow RW, Zhang JH, Reiff WM (1986) J Chem Soc, Chem Comm 1026–1028Google Scholar
  8. 8.
    Miller JS, Calabrese JC, Rommelmann H, Chittipeddi S, Epstein AJ, Zhang JH, Reiff WM (1987) J Am Chem Soc 109:769–781CrossRefGoogle Scholar
  9. 9.
    Kahn O (1993) Molecular magnetism. VCH Publisher, New YorkGoogle Scholar
  10. 10.
    Gatteschi D (1994) Adv Mat 6:635–645CrossRefGoogle Scholar
  11. 11.
    Turnball MM, Sugimoto T, Thompson LK (eds) (1996) Molecule-based magnetic materials, vol 644, ACS Symposium Series. ACS, Washington, D. CGoogle Scholar
  12. 12.
    Manriquez JM, Yee GT, McLean RS, Epstein AJ, Miller JS (1991) Science 252:1415–1417CrossRefGoogle Scholar
  13. 13.
    Gordon DC, Deakin L, Arif AM, Miller JS (2000) J Am Chem Soc 122:290–299CrossRefGoogle Scholar
  14. 14.
    Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) Nature 378:701–703CrossRefGoogle Scholar
  15. 15.
    McConnel HM (1967) Proc Robert A Welch Found Conf 11:144Google Scholar
  16. 16.
    Kollmar C, Kahn O (1991) J Am Chem Soc 1991:7987–7994CrossRefGoogle Scholar
  17. 17.
    Kollmar C, Couty M, Kahn O (1991) J Am Chem Soc 113:7994–8005CrossRefGoogle Scholar
  18. 18.
    Miller JS, Epstein AJ (1998) J Chem Soc Chem Comm 1319–1325Google Scholar
  19. 19.
    Miller JS, Epstein AJ, Reiff WM (1988) Chem Rev 88:201–220CrossRefGoogle Scholar
  20. 20.
    Zhang J, Ensling J, Ksenofontov V, Gutlich P, Epstein AJ, Miller JS (1998) Angew Chem 110:676–679CrossRefGoogle Scholar
  21. 21.
    Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F (1999) Coord Chem Rev 190–192, 1023–1047Google Scholar
  22. 22.
    Mallah T, Thiebaut S, Verdaguer M, Veillet P (1993) Science 262:1554–1557CrossRefGoogle Scholar
  23. 23.
    Entley WR, Girolami GS (1994) Inorg Chem 33:5165–5166CrossRefGoogle Scholar
  24. 24.
    Entley WR, Treadway CR, Wilson SR, Girolami GS (1997) J Am Chem Soc 119:6251–6258CrossRefGoogle Scholar
  25. 25.
    Dujardin E, Ferlay S, Phan X, Desplanches C, Moulin CCD, Sainctavit P, Baudelet F, Dartyge E, Veillet P, Verdaguer M (1998) J Am Chem Soc 120:11347–11352CrossRefGoogle Scholar
  26. 26.
    Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1999) Inorg Chem 38:229–234CrossRefGoogle Scholar
  27. 27.
    Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 271:49–51CrossRefGoogle Scholar
  28. 28.
    Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704–705CrossRefGoogle Scholar
  29. 29.
    Verdaguer M (1996) Science 272:698–699CrossRefGoogle Scholar
  30. 30.
    Kahn O (1987) Struct Bonding 68:89–167CrossRefGoogle Scholar
  31. 31.
    Kahn O, Pei Y, Verdaguer M, Renard JP, Sletten J (1988) J Am Chem Soc 110:782–789CrossRefGoogle Scholar
  32. 32.
    Nakatani K, Bergerat P, Codjovi E, Mathoniere C, Yu P, Kahn O (1991) Inorg Chem 30:3977–3978CrossRefGoogle Scholar
  33. 33.
    Karasawa S, Sano Y, Akita T, Koga N, Itoh T, Iwamura H, Rabu P, Drillon M (1998) J Am Chem Soc 120:10080–10087CrossRefGoogle Scholar
  34. 34.
    Decurtins S, Schmalle HW, Schneuwly P, Ensling J, Gutlich P (1994) J Am Chem Soc 116:9521–9528CrossRefGoogle Scholar
  35. 35.
    Laget V, Hornick C, Rabu P, Drillon M, Ziessel R (1998) Coord Chem Rev 180:1533–1553CrossRefGoogle Scholar
  36. 36.
    Yufit DS, Price DJ, Howard JAK, Gutschke SOH, Powell AK, Wood PT (1999) Chem Comm 1561–1562Google Scholar
  37. 37.
    Batten SR, Hoskins BF, Moubaraki B, Murray KS, Robson R (1999) J Chem Soc, Dalton Trans 2977–2986Google Scholar
  38. 38.
    Batten SR, Jensen P, Kepert CJ, Kurmoo M, Moubaraki B, Murray KS, Price DJ (1999) J Chem Soc, Dalton Trans 2987–2997Google Scholar
  39. 39.
    Escuer A, Vicente R, ElFallah MS, Kumar SB, Mautner FA, Gatteschi D (1998) J Chem Soc, Dalton Trans 3905–3909Google Scholar
  40. 40.
    Tamaki H, Zhong ZJ, Matsumoto N, Kida S, Koikawa M, Achiwa N, Hashimoto Y, Okawa H (1992) J Am Chem Soc 114:6974–6979CrossRefGoogle Scholar
  41. 41.
    Ribas J, Escuer A, Monfort M, Vicente R, Cortes R, Lezama L, Rojo T (1999) Coord Chem Rev 195:1027–1068CrossRefGoogle Scholar
  42. 42.
    Manson JL, Arif AM, Miller JS (1999) Chem Comm 1479–1480Google Scholar
  43. 43.
    Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392–398CrossRefGoogle Scholar
  44. 44.
    Caneschi A, Gatteschi D, Renard JP, Rey P, Sessoli R (1989) J Am Chem Soc 111:785–786CrossRefGoogle Scholar
  45. 45.
    Caneschi A, Ferraro F, Gatteschi D, Rey P, Sessoli R (1991) Inorg Chem 30:3162–3166CrossRefGoogle Scholar
  46. 46.
    Luneau D, Rey P, Laugier J, Fries P, Caneschi A, Gatteschi D, Sessoli R (1991) J Am Chem Soc 113:1245–1251CrossRefGoogle Scholar
  47. 47.
    Caneschi A, Gatteschi D, Sessoli R, Rey P, Cabello CI (1992) J Mat Chem 2:1283–1287CrossRefGoogle Scholar
  48. 48.
    Caneschi A, Chiesi P, David L, Ferraro F, Gatteschi D, Sessoli R (1993) Inorg Chem 32:1445–1453CrossRefGoogle Scholar
  49. 49.
    Caneschi A, Gatteschi D, Sessoli R (1993) Inorg Chem 32:4612–4616CrossRefGoogle Scholar
  50. 50.
    Halcrow MA, Brechin EK, McInnes EJL, Mabbs FE, Davies JE (1998) J Chem Soc, Dalton Trans 2477–2482Google Scholar
  51. 51.
    Miller JS (1994) Adv Mat 6:322–324CrossRefGoogle Scholar
  52. 52.
    Brandon EJ, Kollmar C, Miller JS (1998) J Am Chem Soc 120:1822–1826CrossRefGoogle Scholar
  53. 53.
    Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Inorg Chem 37:2792–2798CrossRefGoogle Scholar
  54. 54.
    Rittenberg DK, Sugiura K, Sakata Y, Mikami S, Epstein AJ, Miller JS (2000) Adv Mat 12:126–130CrossRefGoogle Scholar
  55. 55.
    Lis T (1980) Acta Cryst 36:2042–2046CrossRefGoogle Scholar
  56. 56.
    Boyd PDW, Li QY, Vincent JB, Folting K, Chang HR, Streib WE, Huffman JC, Christou G, Hendrickson DN (1988) J Am Chem Soc 110:8537–8539CrossRefGoogle Scholar
  57. 57.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365:141–143CrossRefGoogle Scholar
  58. 58.
    Sessoli R, Tsai HL, Schake AR, Wang SY, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN (1993) J Am Chem Soc 115:1804–1816CrossRefGoogle Scholar
  59. 59.
    Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B (1996) Nature 383:145–147CrossRefGoogle Scholar
  60. 60.
    Tsai HL, Eppley HJ, Devries N, Folting K, Christou G, Hendrickson DN J Chem Soc, Chem Comm1745–1746Google Scholar
  61. 61.
    Sun ZM, Ruiz D, Dilley NR, Soler M, Ribas J, Folting K, Maple MB, Christou G, Hendrickson DN (1999) Chem Comm 1973–1974Google Scholar
  62. 62.
    Boskovic C, Pink M, Huffman JC, Hendrickson DN, Christou G (2001) Am Chem Soc 123:9914–9915CrossRefGoogle Scholar
  63. 63.
    Boskovic C, Brechin EK, Streib WE, Folting K, Bollinger JC, Hendrickson DN, Christou G (2002) J Am Chem Soc 124:3725–3736CrossRefGoogle Scholar
  64. 64.
    Wieghardt K, Pohl K, Jibril I, Huttner G (1984) Angew Chem Int Ed Engl 23:77–78CrossRefGoogle Scholar
  65. 65.
    Delfs C, Gatteschi D, Pardi L, Sessoli R, Wieghardt K, Hanke D (1993) Inorg Chem 32:3099–3103CrossRefGoogle Scholar
  66. 66.
    Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R (1996) Europhys Lett 35:133–138CrossRefGoogle Scholar
  67. 67.
    Barra A-L, Bencini F, Caneschi A, Gatteschi D, Paulsen C, Sangregorio C, Sessoli R, Sorace L (2001) Chem Phys Chem 2:523–531CrossRefGoogle Scholar
  68. 68.
    Tejada J, Chudnovsky EM, del Barca E, Hernandez JM, Spiller TP (2001) Nanotechnology 12:181–186CrossRefGoogle Scholar
  69. 69.
    Tejada J (2001) Polyhedron 20:1751–1756CrossRefGoogle Scholar
  70. 70.
    Awschalom DD, Di Vincenzo DP, Smyth JJ (1992) Science 258:414–421CrossRefGoogle Scholar
  71. 71.
    Leuenberger MN, Loss D (2001) Nature 410:789–793CrossRefGoogle Scholar
  72. 72.
    Cornia A, Fabretti AC, Pacchioni M, Zobbi L, Bonachi D, Caneschi A, Gatteschi D, Biagi R, Del Pennino U, De Renzi V, Gurevich L, Van der Zant HSJ (2003) Angew Chem Int Ed 42:1645–1648CrossRefGoogle Scholar
  73. 73.
    Dahlberg ED (1995) Phys Today 48:34–40CrossRefGoogle Scholar
  74. 74.
    Kahn O (2000) Acc Chem Res 33:647–657CrossRefGoogle Scholar
  75. 75.
    Kahn O (1985) Angew Chem Int Ed 24:834–850CrossRefGoogle Scholar
  76. 76.
    Verdaguer M (2001) Polyhedron 20:1115–1128CrossRefGoogle Scholar
  77. 77.
    Glaser T, Theil H, Liratzis I, Weyhermüller T, Bill E (2006) Inorg Chem 45:4889–4891CrossRefGoogle Scholar
  78. 78.
    Goodenough JB (1955) Phys Rev 79:564CrossRefGoogle Scholar
  79. 79.
    Goodenough JB (1958) J Phys Chem Solids 6:287CrossRefGoogle Scholar
  80. 80.
    Goodenough JB (1963) Magnetism and the chemical bond. Interscience, New YorkGoogle Scholar
  81. 81.
    Kanamori J (1959) J Phys Chem Solids 10:87–98CrossRefGoogle Scholar
  82. 82.
    Anderson PW (1959) Phys Rev 115:2–13CrossRefGoogle Scholar
  83. 83.
    Anderson PW (ed) (1963) Magnetism. Academic, New YorkGoogle Scholar
  84. 84.
    Weihe H, Güdel HU (1997) Inorg Chem 36:3632–3639CrossRefGoogle Scholar
  85. 85.
    Anderson PW, Hasegawa H (1955) Phys Rev 100:675–681CrossRefGoogle Scholar
  86. 86.
    Zener C (1951) Phys Rev 82:403–405CrossRefGoogle Scholar
  87. 87.
    Blondin G, Girerd J-J (1990) Chem Rev 90:1359–1376CrossRefGoogle Scholar
  88. 88.
    Glaser T, Beissel T, Bill E, Weyhermüller T, Schünemann V, Meyer-Klaucke W, Trautwein AX, Wieghardt K (1999) J Am Chem Soc 121:2193–2208CrossRefGoogle Scholar
  89. 89.
    Glaser T, Kesting F, Beissel T, Bill E, Weyhermüller T, Meyer-Klaucke W, Wieghardt K (1999) Inorg Chem 38:722–732CrossRefGoogle Scholar
  90. 90.
    Glaser T, Wieghardt K (1998) In: Hodgson KO, Solomon EI (eds) Spectroscopic methods in bioinorganic chemistry, ACS symposium series, ACS, Washington, DC, pp 314–331Google Scholar
  91. 91.
    Longuet-Higgins HC (1950) J Chem Phys 18:265–274CrossRefGoogle Scholar
  92. 92.
    Iwamura H (1990) Adv Phys Org Chem 26:179–253CrossRefGoogle Scholar
  93. 93.
    Dougherty DA (1991) Acc Chem Res 24:88–94CrossRefGoogle Scholar
  94. 94.
    Ovchinnikov AA (1978) Theoret Chim Acta 47:297–304CrossRefGoogle Scholar
  95. 95.
    Yoshizawa K, Hoffmann R (1995) J Am Chem Soc 117:6921–6926CrossRefGoogle Scholar
  96. 96.
    Glaser T, Gerenkamp M, Fröhlich R (2002) Angew Chem Int Ed 41:3823–3825CrossRefGoogle Scholar
  97. 97.
    Glaser T, Heidemeier M, Grimme S, Bill E (2004) Inorg Chem 43:5192–5194CrossRefGoogle Scholar
  98. 98.
    Glaser T, Heidemeier M, Weyhermüller T, Hoffmann R-D, Rupp H, Müller P (2006) Angew Chem Int Ed 45:6033–6037CrossRefGoogle Scholar
  99. 99.
    Glaser T, Heidemeier M, Fröhlich R (2007) Compt Rend Chim 10:71–78CrossRefGoogle Scholar
  100. 100.
    Glaser T, Heidemeier M, Strautmann JBH, Bögge H, Stammler A, Krickemeyer E, Huenerbein R, Grimme S, Bothe E, Bill E (2007) Chem Eur J 13:9191–9206CrossRefGoogle Scholar
  101. 101.
    Theil H, Frhr v, Richthofen C-G, Krickemeyer E, Stammler A, Bögge H, Glaser T (2008) Inorg Chim Acta 361:916–924CrossRefGoogle Scholar
  102. 102.
    Glaser T, Theil H, Heidemeier M (2008) C R Chimie 11:1121–1136CrossRefGoogle Scholar
  103. 103.
    Rajca A (2002) Chem Eur J 8:4834–4841CrossRefGoogle Scholar
  104. 104.
    Iwamura H, Koga N (1993) Acc Chem Res 26:346–351CrossRefGoogle Scholar
  105. 105.
    Oberhausen KJ, Obrien RJ, Richardson JF, Buchanan RM, Costa R, Latour JM, Tsai HL, Hendrickson DN (1993) Inorg Chem 32:4561–4565CrossRefGoogle Scholar
  106. 106.
    Okamoto M, Teki Y, Takui T, Kinoshita T, Itoh K (1990) Chem Phys Lett 173:265–270CrossRefGoogle Scholar
  107. 107.
    Mitsubori S.-i, Ishida T, Nogami T, Iwamura H (1994) Chem Lett 285–288Google Scholar
  108. 108.
    Ishida T, Mitsubori S-i, Nogami T, Takeda N, Ishikawa M, Iwamura H (2001) Inorg Chem 40:7059–7064CrossRefGoogle Scholar
  109. 109.
    Ishida T, Nakayama K, Nakagawa M, Sato W, Ishikawa Y (1997) Synth Met 85:1655–1658CrossRefGoogle Scholar
  110. 110.
    Lloret F, de Munno G, Julve M, Cano J, Ruiz R, Caneschi A (1998) Angew Chemie 110:143–145CrossRefGoogle Scholar
  111. 111.
    Ishida T, Mitsubori S-i, Nogami T, Iwamura H (1993) Mol Cryst Liq Cryst 233:345–350CrossRefGoogle Scholar
  112. 112.
    Yasui M, Ishikawa Y, Akiyama N, Ishida T, Nogami T, Iwasaki F (2001) Acta Cryst B57:288–295Google Scholar
  113. 113.
    Feyerhem R, Abens S, Günther D, Ishida T, Meißner M, Meschke M, Nogami T, Steiner M (2000) J Phys Condens Matter 12:8495–8509CrossRefGoogle Scholar
  114. 114.
    Ezuhara T, Endo K, Matsuda K, Aoyama Y (2000) New J Chem 24:609–613CrossRefGoogle Scholar
  115. 115.
    Omata J, Ishida T, Hashizume D, Iwasaki F, Nogami T (2001) Inorg Chem 40:3954–3958CrossRefGoogle Scholar
  116. 116.
    Ishida T, Kawakami T, Mitsubori S.-i, Nogami T, Yamaguchi K, Iwamura H (2002) J Chem Soc, Dalton Trans 3177–3186Google Scholar
  117. 117.
    Kusaka T, Ishida T, Hashizume D, Iwasaki F, Nogami T (2000) Chem Lett 1146–1147Google Scholar
  118. 118.
    Zusai K, Katayama T, Ishida T, Nogami T (2000) Mol Cryst Liq Cryst 343:121–126CrossRefGoogle Scholar
  119. 119.
    Nakayama K, Ishida T, Takayama R, Hashizume D, Yasui M, Iwasaki F, Nogami T (1998) Chem Lett 497–498Google Scholar
  120. 120.
    Corbin DR, Francesconi LC, Hendrickson DN, Stucky GD (1981) Inorg Chem 20:2084–2089CrossRefGoogle Scholar
  121. 121.
    McCleverty JA, Ward MD (1998) Acc Chem Res 31:842–851CrossRefGoogle Scholar
  122. 122.
    Cargill Thompson AMW, Gatteschi D, McCleverty JA, Navas JA, Rentschler E, Ward MD (1996) Inorg Chem 35:2701–2703CrossRefGoogle Scholar
  123. 123.
    Bayly SR, Humphrey ER, de Chair H, Paredes CG, Bell ZR, Jeffery JC, McCleverty JA, Ward MD, Totti F, Gatteschi D, Courric S, Steele BR, Screttas CG (2001) J Chem Soc, Dalton Trans 1401–1414Google Scholar
  124. 124.
    Ung VA, Thompson A, Bardwell DA, Gatteschi D, Jeffery JC, McCleverty JA, Totti F, Ward MD (1997) Inorg Chem 36:3447–3454CrossRefGoogle Scholar
  125. 125.
    Ung VA, Couchman SM, Jeffery JC, McCleverty JA, Ward MD, Totti F, Gatteschi D (1999) Inorg Chem 38:365–369CrossRefGoogle Scholar
  126. 126.
    Bayly SR, McCleverty JA, Ward MD, Gatteschi D, Totti F (2000) Inorg Chem 39:1288–1293CrossRefGoogle Scholar
  127. 127.
    Bencini A, Gatteschi D, Totti F, Sanz DN, McCleverty JA, Ward MD (1998) J Phys Chem A 102:10545–10551CrossRefGoogle Scholar
  128. 128.
    Fernández I, Ruiz R, Faus J, Julve M, Lloret F, Cano J, Ottenwaelder X, Journaux Y, Munoz C (2001) Angew Chem Int Ed 40:3039–3042CrossRefGoogle Scholar
  129. 129.
    Pereira CLM, Pedroso EF, Stumpf HO, Novak MA, Ricard L, Ruiz-Garcia R, Rivière E, Journaux Y (2004) Angew Chem Int Ed 43:956–958CrossRefGoogle Scholar
  130. 130.
    Pardo E, Bernot K, Julve M, Lloret F, Cano J, Ruiz-Garcia R, Pasán J, Ruiz-Perez C, Ottenwaelder X, Journaux Y (2004) Chem Comm 920–921Google Scholar
  131. 131.
    Pardo E, Bernot K, Julve M, Lloret F, Cano J, Ruiz-Garcia R, Delgado FS, Ruiz-Perez C, Ottenwaelder X, Journaux Y (2004) Inorg Chem 43:2768–2770CrossRefGoogle Scholar
  132. 132.
    Foxon SP, Torres GR, Walter O, Pedersen JZ, Toftlund H, Hüber M, Falk K, Haase W, Cano J, Lloret F, Julve M, Schindler S (2004) Eur J Inorg Chem 335–343Google Scholar
  133. 133.
    Paital AR, Mitra T, Ray D, Wong WT, Ribas-Ariño J, Novoa JJ, Ribas J, Aromi G (2005) Chem Comm 5172–5174Google Scholar
  134. 134.
    Ottenwaelder X, Cano J, Journaux Y, Riviere E, Brennan C, Nierlich M, Ruiz-Garcia R (2004) Angew Chem Int Ed 43:850–852CrossRefGoogle Scholar
  135. 135.
    Bencini A, Ciofini I, Uytterhoeven MG (1998) Inorg Chim Acta 274:90–101CrossRefGoogle Scholar
  136. 136.
    Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchanged coupled systems. Springer, BerlinCrossRefGoogle Scholar
  137. 137.
    Gatteschi D, Sorace L (2001) J Solid State Chem 159:253–261CrossRefGoogle Scholar
  138. 138.
    Glaser T (2004) Angew Chem 115:5846–5848CrossRefGoogle Scholar
  139. 139.
    Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42:268–297CrossRefGoogle Scholar
  140. 140.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
  141. 141.
    Wernsdorfer W (2001) Adv Chem Phys 118:1–93CrossRefGoogle Scholar
  142. 142.
    Kennedy BJ, Brain G, Horn E, Murray KS, Snow MR (1985) Inorg Chem 24:1647–1653CrossRefGoogle Scholar
  143. 143.
    Basler R, Tregenna-Piggot PLW, Dobe C, Güdel HU, Janssen S, McIntyre GJ (2001) J Am Chem Soc 123:3377–3378CrossRefGoogle Scholar
  144. 144.
    Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Angew Chem Int Ed Engl 36:2329–2331CrossRefGoogle Scholar
  145. 145.
    Krzystek J, Telser J, Hoffman BM, Brunel L-C, Licoccia S (2001) J Am Chem Soc 123:7890–7897CrossRefGoogle Scholar
  146. 146.
    Bendix J, Gray HB, Golubkov G, Gross Z (2000) J Chem Soc, Chem Commun 1957–1958Google Scholar
  147. 147.
    Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel L-C (1999) Inorg Chem 38:6121–6129CrossRefGoogle Scholar
  148. 148.
    Goldberg DP, Telser J, Krzystek J, Montalban AG, Brunel L-C, Barrett AGM, Hoffman BM (1997) J Am Chem Soc 119:8722–8723CrossRefGoogle Scholar
  149. 149.
    Limburg J, Vrettos JS, Crabtree RH, Brudvig GW, de Paula JC, Hassan A, Barra A-L, Duboc-Toia C, Collomb M-N (2001) Inorg Chem 40:1698–1703CrossRefGoogle Scholar
  150. 150.
    Larrow JF, Jacobsen EN, Gao Y, Hong Y, Nie X, Zepp CM (1994) J Org Chem 59:1939–1942CrossRefGoogle Scholar
  151. 151.
    Larrow JF, Jacobsen EN (1997) Org Synth 75:1–10Google Scholar
  152. 152.
    Zhang W, Jacobsen EN (1991) J Org Chem 56:2296–2298CrossRefGoogle Scholar
  153. 153.
    Campbell KA, Lashley MR, Wyatt JK, Nantz MH, Britt RD (2001) J Am Chem Soc 123:5710–5719CrossRefGoogle Scholar
  154. 154.
    Hernández-Molina R, Mederos A (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 1. Elsevier, Ltd, Oxford, pp 411–446Google Scholar
  155. 155.
    Lopez J, Liang S, Bu XR (1998) Tetrahedron Lett 39:4199–4202CrossRefGoogle Scholar
  156. 156.
    Janssen KBM, Laquierra I, Dehaen W, Parton RF, Vankelecom IFJ, Jacobs PA (1997) Tetrahedron: Asymmetry 8:3481–3487CrossRefGoogle Scholar
  157. 157.
    Atkins R, Brewer G, Kokot E, Mockler GM, Sinn E (1985) Inorg Chem 24:127–134CrossRefGoogle Scholar
  158. 158.
    Böttcher A, Elias H, Eisenmann B, Hilms E, Huer A, Kniep R, Röhr CZ (1994) Naturforsch B 49:1089–1100Google Scholar
  159. 159.
    Fernandey Garcia MI, Fondo M, Garcia Deibe AM, Fernandez Fernandez MB, Gonzalez AMZ (2000) Anorg Allg Chem 626:1985–1991CrossRefGoogle Scholar
  160. 160.
    Glaser T, Heidemeier M, Hahn FE, Pape T, Lügger T (2003) Z Naturforsch B 58:505–510Google Scholar
  161. 161.
    Glaser T, Heidemeier M, Lügger T (2003) Dalton Trans 2381–2383Google Scholar
  162. 162.
    Glaser T, Heidemeier M, Fröhlich R, Hildebrandt P, Bothe E, Bill E (2005) Inorg Chem 44:5467–5482CrossRefGoogle Scholar
  163. 163.
    Long JR (ed) (2003) Molecular cluster magnets. In: Chemistry of nanostructured materials. World Scientific, Hong KongGoogle Scholar
  164. 164.
    Miyasaka H, Matsumoto N, Okawa H, Re N, Gallo E, Floriani C (1996) J Am Chem Soc 118:981–994CrossRefGoogle Scholar
  165. 165.
    Re N, Gallo E, Floriani C, Miyasaka H, Matsumoto N (1996) Inorg Chem 35:6004–6008CrossRefGoogle Scholar
  166. 166.
    Miyasaka H, Ieda H, Matsumoto N, Re N, Crescenzi R, Floriani C (1998) Inorg Chem 37:255–263CrossRefGoogle Scholar
  167. 167.
    Re N, Crescenzi R, Floriani C, Miyasaka H, Matsumoto N (1998) Inorg Chem 37:2717–2722CrossRefGoogle Scholar
  168. 168.
    Miyasaka H, Matsumoto N, Re N, Gallo E, Floriani C (1997) Inorg Chem 36:670–676CrossRefGoogle Scholar
  169. 169.
    Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F (1999) Coord Chem Rev 192:1023–1047CrossRefGoogle Scholar
  170. 170.
    Ohba M, Okawa H (2000) Coord Chem Rev 198:313–328CrossRefGoogle Scholar
  171. 171.
    Beltran LMC, Long JR (2005) Acc Chem Res 38:325–334CrossRefGoogle Scholar
  172. 172.
    Rebilly J-N, Mallah T (2006) Struct Bonding 122:103–131CrossRefGoogle Scholar
  173. 173.
    Shen XP, Li BL, Zou JZ, Xu Z, Yu YP, Liu SX (2002) Trans Met Chem 4:372CrossRefGoogle Scholar
  174. 174.
    Choi HJ, Sokol JJ, Long JR (2004) Inorg Chem 43:1606–1608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Anorganische Chemie I, Fakultät für ChemieUniversität BielefeldBielefeldGermany

Personalised recommendations