Solvent Extraction for Microalgae Lipids

  • Emilio Molina Grima
  • María José Ibáñez González
  • Antonio Giménez Giménez
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 5)

Abstract

This chapter analyzes the solvent extraction and fractionation of algal oil for biodiesel production. Initially the basic thermodynamic principles for the dissolution of materials into solvents are outlines. For a rational design of solvent or solvent system to be used, a crucial step in the downstream processing, a quantitative approach is explained, based on the calculation of the solubility parameters (polarity index, solubility parameters and dipole moments) for the solvent and the lipid class to be extracted. This allows a great reduction in the experimental design in lipid extraction. The possible pre-treatments of biomass are then studied. The core of the chapter is devoted to analyzing the extraction of lipids from both dry and paste biomass, and how to solve some problems that occur due to the nature of lipids present and the possibility of their prior fractionation. The following section discusses an alternative to the extraction of lipids for biofuel, namely the direct extraction of fatty acids from biomass by means of a direct saponification of both dry and paste biomass and their eventual fractionation. Then we analyze the direct production of FAMEs (biodiesel) through a direct transesterification of wet paste biomass. The pros and cons of the three methods are also analyzed. Finally, the chapter also provides an assessment of a case study for processing the wet biomass produced in a 1 ha plant of tubular photobioreactors.

References

  1. Ackman RG, Tocher CS (1968) Marine phytoplankter fatty acid. J Fish Res Board 25:1603–1620CrossRefGoogle Scholar
  2. Algren G, Merino L (1991) Lipid analysis of freshwater microalgae: a method study. Arch Hydrobiol 121:295–306Google Scholar
  3. Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380CrossRefGoogle Scholar
  4. Belarbi EH, Molina-Grima E, Chisti Y (2000) A process for high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529CrossRefGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  6. Bonner WD (1910) Experimental determination of binodal curves, plait points, and tie lines, in fifty systems, each consisting of water and two organic liquids. JPhysChem 14:738–789Google Scholar
  7. Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. J Agric Food Chem 55:4795–4801CrossRefGoogle Scholar
  8. Cartens M, Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Ibáñez-González MJ (1996) Eicosapentaenoic acid (20:5n-3) from the marine microalga Phaeodactylum tricornutum. J Am Oil Chem Soc 72:1–7Google Scholar
  9. Cerón-García MC, Campos-Sánchez I, Sánchez-Fernández JF, Acién-Fernández FG, Molina-Grima E, Fernández-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766CrossRefGoogle Scholar
  10. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8:194–204CrossRefGoogle Scholar
  11. Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc 49:97–116CrossRefGoogle Scholar
  12. Cohen Z, Cohen S (1991) Preparation of eicosapentaenoic acid (EPA) concentrate from Porphyridium cruentum. J Am Oil Chem Soc 68:16–19CrossRefGoogle Scholar
  13. Cooney M, Young G (2009) Methods and compositions for extraction and transesterification of biomass. USA Patent Application 2009/0234146 A1Google Scholar
  14. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Biosep Rev 38:291–325CrossRefGoogle Scholar
  15. Coulson JM, Richardson JF (1968) Chemical engineering unit operation, vol II. Pergamon Press, Oxford, 799 ppGoogle Scholar
  16. Dunstan GA, Volkman JK, Jefrey SW, Barrett SM (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 2. Lipid classes and fatty acid. Exp Mar Biol Ecol 161:115–134CrossRefGoogle Scholar
  17. Folch J, Lees M, Stanley GM (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  18. Garrido F, Banerjee U, Chisti Y, Moo-Young M (1994) Disruption of a recombinant yeast for the release of β-galactosidase. Bioseparation 4:319–328Google Scholar
  19. Gelin F, Boogers I, Noordeloos A, Damste J, Riegman R, De Leeuw J (1997) Resistant Biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: Geochemical implications. Organ Geochem 26:659–675CrossRefGoogle Scholar
  20. Giménez-Giménez A, Ibáñez-González MJ, Robles-Medina A, Molina-Grima E, García-Salas S, Esteban-Cerdán L (1998) Downstream processing and purification of eicosapentaenoic (20:5n-3) and arachidonic acids from microalga Porphyridium cruentum. Bioseparation 16:517–580Google Scholar
  21. Guckert JB, Cooksey KE, Jackson LL (1988) Lipid solvent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8:139–149CrossRefGoogle Scholar
  22. Gupta MN, Batra R, Tyagi R, Sharma A (1997) Polarity Index: the guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnol Prog 13:284–288CrossRefGoogle Scholar
  23. Hansen MA (1967) The three dimensional solubility parameter and solvent diffusion coefficient. Their importance in surface coating formulation. PhD thesis, Den Polytekniske Laereanstalt, Danmarks Tekniske Højskole, Copenhagen, Danish Technical Press, pp106Google Scholar
  24. Hansen MA (2008) Polymers science applied to biological problems: Prediction of cytotoxic drug interactions with DNA. Eur Polym J 44:2741–2748CrossRefGoogle Scholar
  25. Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426CrossRefGoogle Scholar
  26. Hedenskog G, Ebbinghaus L (1972) Reduction of the nucleic acid content of single-cell protein concentrates. Biotech Bioeng 14:447–457CrossRefGoogle Scholar
  27. Ibañez-González MJ, Robles-Medina A, Molina-Grima E, Giménez-Giménez A, Carstens M, Esteban-Cerdán L (1998) Optimization of fatty acid extraction from Phaeodactylum tricornutum UTEX 640 biomass. J Am Oil Chem Soc 75:1735–1740CrossRefGoogle Scholar
  28. Jung S, Mauer D, Johnson LA (2009) Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans. Biores Technol 100:5340–5347CrossRefGoogle Scholar
  29. Kates M (1986) Techniques of lipidology: isolation, analysis and identification of lipids. Elsevier Science Publishers, Amsterdam, 464 ppGoogle Scholar
  30. Kayama M, Araki S, Sato S (1989) Lipids of marine plants. In: Ackman RG (ed) Marine biogenic lipids, fats and oils, vol II. CRC Press, Boca Raton, pp 4–19Google Scholar
  31. Kim Y-H, Choi YK, Park J, Lee S, Yang YH, Kim HJ, Park TJ, Kim Y-H (2012) Ionic Liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315Google Scholar
  32. Kochert G (1978) Quantitation of the macromolecular components of microalgae. In: Hellebust JA, Craigie JS (Eds), Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 189–195Google Scholar
  33. Lalman JA, Bagley DM (2004) Extraction long-chain fatty acids from a fermentation medium. J Am Oil Chem Soc 81:105–110CrossRefGoogle Scholar
  34. Lee RE (1989) Phycology, 2nd edn. Cambridge University Press, Cambridge, 644 ppGoogle Scholar
  35. Lee SJ, Jun B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556CrossRefGoogle Scholar
  36. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77CrossRefGoogle Scholar
  37. Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction method for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116CrossRefGoogle Scholar
  38. Lide DR (ed) (2001) Handbook of chemistry and physics. CRC Press LLC, Boca Raton, 2712 ppGoogle Scholar
  39. Lo TC, Baird MH, Hanson C (eds) (1983) Handbook of solvent extraction, vol 1. Wiley, New York, 457 ppGoogle Scholar
  40. López-Alonso D, Belardi EH, Rodríguez-Ruíz J, Segura-del C, Giménez-Giménez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481CrossRefGoogle Scholar
  41. Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24CrossRefGoogle Scholar
  42. Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Sánchez-Pérez JA, García-Camacho F, García-Sánchez JL (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71:955–959CrossRefGoogle Scholar
  43. Molina-Grima E, Robles-Medina A, Giménez-Giménez A, Ibañez-González MJ (1996) Gram-scale purification of eicosapentaenoic acid (EPA, 20:5n-3) from wet Phaeodactylum tricornutum UTEX 640 biomass. J Appl Phycol 8:359–367CrossRefGoogle Scholar
  44. Molina-Grima E, Robles-Medina A, Giménez-Giménez A (1999) Recovery of algal PUFAs. In: Cohen Z (ed) Chemical from microalgae. Taylor & Ltd, London, pp 108–144Google Scholar
  45. Nagle N, Lemke P (1990) Production of methyl ester from microalgae. Appl Biochem Biotechnol 24:355–361CrossRefGoogle Scholar
  46. Nasirullah (2005) Physical refining: electrolyte degumming of nonhydra­table gums from selected vegetable oils. J Food Lipid 12:103–111CrossRefGoogle Scholar
  47. Perry RH, Green DW, Maloney JO (eds) (2003) Perry Manual del Ingeniero Químico, 6th Spanish edn. Mc Graw-Hill, Mexico, 2577 ppGoogle Scholar
  48. Pohl P, Zurheide F (1982) Marine algae in pharmaceutical science, vol 2. Walter de Gruyter & Co, New York, pp 65–89Google Scholar
  49. Porter NA, Caldwell SE, Caren AM (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–283CrossRefGoogle Scholar
  50. Rajam L, Soban DR, Sundaresan A, Arumughan C (2005) A novel process for physically refining Rice Bran oil through simultaneous degumming and dewaxing. J Am Oil Chem Soc 82:213–220CrossRefGoogle Scholar
  51. Ramírez-Fajardo A, Esteban-Cerdán L, Robles-Medina A, Acién-Fernández FG, González-Moreno PA, Molina-Grima E (2007) Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol 109:120–126CrossRefGoogle Scholar
  52. Robles-Medina A, Giménez-Giménez A, García-Camacho F, Sánchez-Pérez JA, Molina-Grima E, Contreras-Gómez A (1995a) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J Am Oil Chem Soc 72:575–583CrossRefGoogle Scholar
  53. Robles-Medina A, Giménez-Giménez A, García-Camacho F, Sánchez-Pérez JA, Molina-Grima E, García-Sánchez JL (1995b) Obtención de concentrados de ácidos grasos poliinsaturados por el método de los compuestos de inclusión de urea. Grasas Aceites 42:174–182CrossRefGoogle Scholar
  54. Robles-Medina A, Giménez-Giménez A, Ibáñez-González MJ (1998) Downprocessing of algal polyunsaturated fatty acids. Biotechnol Adv 16:517–580CrossRefGoogle Scholar
  55. Rodríguez-Ruíz J, Belarbi H, García-Sánchez JL, López-Alonso D (1998) Rapid simultaneous lipid extraction and transesterification of fatty acids analyses. Biotechnology 12:689–691Google Scholar
  56. Sekine T, Hasegawa Y (1977) Solvent extraction chemistry: fundamentals and applications. Marcel Dekker Inc., New York, 919 ppGoogle Scholar
  57. Seto A, Yamashita S (1986) Method of preparing fatty acid composition containing high concentration of eicosapentaenoic acid. USA Patent 4,615,839, 7 Oct 1986Google Scholar
  58. Shahidi F (ed) (2005) Bailey´s industrial oils and fats, products. Vol 5. Edible oil and fats products: processing technologies. Wiley, New York, 3616 ppGoogle Scholar
  59. Shuit SH, Lee KT, Kamarududdin AH, Yusup S (2010) Reactive extraction and in situ esterification of Jartropha curcas L. Seeds for the production of biodiesel. Fuel 89:527–530CrossRefGoogle Scholar
  60. Snyder LR (1974) Classification of the solvent properties of common liquids. J Chromatogr 92:223–230CrossRefGoogle Scholar
  61. Stefanis E, Panayiotou C (2008) Prediction of Hansen solubility parameters with a new group-contribution method. Int J Thermophys 29:568–685CrossRefGoogle Scholar
  62. Sukenik A, Carmeli Y (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  63. Tijssen R, Billiet HAH, Schoenmakers PJ (1976) Use of the solubility parameter for predicing selectivity and retention in chromatography. J Chromatogr 122:185–203CrossRefGoogle Scholar
  64. Tomaselli L (2004) The microalgal cell. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 3–19Google Scholar
  65. Van Dyck JW, Frish HL, Wu DT (1989) Solubility, solvency, and parameters. Ind Eng Chem Prod Res Dev 24:473–478CrossRefGoogle Scholar
  66. Van Kreevelen DE, Chermin HAG (1951) Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem Eng Sci 1:66–80CrossRefGoogle Scholar
  67. Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72:118–121CrossRefGoogle Scholar
  68. Zhukov AV, Vereshchagin AG (1981) Current techniques of extraction, purification and preliminary fractionation of polar lipids of natural origin. Adv Lipid Res 18:247–282Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Emilio Molina Grima
    • 1
  • María José Ibáñez González
    • 1
  • Antonio Giménez Giménez
    • 1
  1. 1.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain

Personalised recommendations