Frame-Based Interactive Simulation of Complex Deformable Objects

  • Benjamin GillesEmail author
  • François Faure
  • Guillaume Bousquet
  • Dinesh K. Pai
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 7)


We present a new type of deformable model which combines the realism of physically based continuum mechanics models and the usability of frame-based skinning methods, allowing the interactive simulation of objects with heterogeneous material properties and complex geometries. The degrees of freedom are coordinate frames. In contrast with traditional skinning, frame positions are not scripted but move in reaction to internal body forces. The deformation gradient and its derivatives are computed at each sample point of a deformed object and used in the equations of Lagrangian mechanics to achieve physical realism. We introduce novel material-aware shape functions in place of the traditional radial basis functions used in meshless frameworks, allowing coarse deformation functions to efficiently resolve non-uniform stiffnesses. Complex models can thus be simulated at high frame rates using a small number of control nodes.


Shape Function Deformation Mode Integration Point Meshless Method Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Florent Falipou, Michaël Adam, Laurence Boissieux, François Jourdes, Estelle Duveau and Lionel Revéret for models and data. This work is partly funded by European project PASSPORT for Liver Surgery (ICT-2007.5.3 223894) and French ANR project SoHuSim. Thanks to the support of the Canada Research Chairs Program, NSERC, CIHR, Human Frontier Science Program, and Peter Wall Institute for Advanced Studies.


  1. 1.
    Adams B, Ovsjanikov M, Wand M, Seidel H-P, Guibas LJ (2008) Meshless modeling of deformable shapes and their motion. In: Symposium on computer animation, pp 77–86, 2008Google Scholar
  2. 2.
    Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA–an open source framework for medical simulation. In: Medicine meets virtual reality, MMVR 15, pp 1–6, Long Beach, California, Etats-Unis, 2007Google Scholar
  3. 3.
    Allard J, Faure F, Courtecuisse H, Falipou F, Duriez C, Kry P (2010) Volume contact constraints at arbitrary resolution. ACM Trans Graph 29(3):205–223Google Scholar
  4. 4.
    An SS, Kim T, James DL (2008) Optimizing cubature for efficient integration of subspace deformations. ACM Trans Graph 27(5):1–10CrossRefGoogle Scholar
  5. 5.
    Baraff D, Witkin A (1998) Large steps in cloth simulation. SIGGRAPH Comput Graph 32:106–117Google Scholar
  6. 6.
    Barbič J, James DL (2005) Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans Graph (SIGGRAPH 2005) 24(3):982–990Google Scholar
  7. 7.
    Bathe K (1996) Finite element procedures. Prentice Hall, Englewood CliffsGoogle Scholar
  8. 8.
    Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE TVCG 5:62–73Google Scholar
  9. 9.
    Debunne G, Desbrun M, Cani M-P, Barr A (2001) Dynamic real-time deformations using space and time adaptive sampling. In: SIGGRAPH, computer graphics, pp 31–36, 2001Google Scholar
  10. 10.
    Faure F, Gilles B, Bousquet G, Pai DK (2011) Sparse meshless models of complex deformable solids. ACM Trans Graph 30(4):73Google Scholar
  11. 11.
    Fries T-P, Matthies HG (2003) Classification and overview of meshfree methods. Technical report, TU Brunswick, GermanyGoogle Scholar
  12. 12.
    Galoppo N, Otaduy MA, Moss W, Sewall J, Curtis S, Lin MC (2009) Controlling deformable material with dynamic morph targets. In: Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and games, Feb 2009Google Scholar
  13. 13.
    Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elastic models. ACM Trans Graph 30(2):15Google Scholar
  14. 14.
    Gourret J-P, Thalmann NM, Thalmann D (1989) Simulation of object and human skin formations in a grasping task. SIGGRAPH Comput Graph 23(3):21–30CrossRefGoogle Scholar
  15. 15.
    Grinspun E, Krysl P, Schröder P (2002) Charms: a simple framework for adaptive simulation. In: SIGGRAPH computer graphics, pp 281–290, 2002Google Scholar
  16. 16.
    Gross M, Pfister H (2007) Point-based graphics. Morgan Kaufmann, San FranciscoGoogle Scholar
  17. 17.
    Irving G, Teran J, Fedkiw R (2006) Tetrahedral and hexahedral invertible finite elements. Graph Models 68(2):66–89zbMATHCrossRefGoogle Scholar
  18. 18.
    James DL, Pai DK (2003) Multiresolution green’s function methods for interactive simulation of large-scale elastostatic objects. ACM Trans Graph 22:47–82CrossRefGoogle Scholar
  19. 19.
    Kaufmann P, Martin S, Botsch M, Gross M (2008) Flexible simulation of deformable models using discontinuous Galerkin fem. In: Symposium on computer animation, 2008Google Scholar
  20. 20.
    Kavan L, Collins S, Zara J, O’Sullivan C (2007) Skinning with dual quaternions. In: Symposium on interactive 3D graphics and games, pp 39–46, 2007Google Scholar
  21. 21.
    Kavan L, Collins S, Zara J, O’Sullivan C (2008) Geometric skinning with approximate dual quaternion blending, vol 27. ACM Press, New YorkGoogle Scholar
  22. 22.
    Kim T, James DL (2009) Skipping steps in deformable simulation with online model reduction. ACM Trans Graph 28:123:1–123:9Google Scholar
  23. 23.
    Liu Y, Wang W, Lévy B, Sun F, Yan D-M, Yang C (2009) On centroidal voronoi tessellation–energy smoothness and fast computation. ACM Trans Graph 28:08Google Scholar
  24. 24.
    Magnenat-Thalmann N, Laperrière R, Thalmann D (1988) Joint dependent local deformations for hand animation and object grasping. In: Graphics interface, pp 26–33, 1988Google Scholar
  25. 25.
    Martin S, Kaufmann P, Botsch M, Wicke M, Gross M (2008) Polyhedral finite elements using harmonic basis functions. Comput Graph Forum 27(5):1521–1529CrossRefGoogle Scholar
  26. 26.
    Martin S, Kaufmann P, Botsch M, Grinspun E, Gross M (2010) Unified simulation of elastic rods, shells, and solids. SIGGRAPH Comput Graph 29(4):39Google Scholar
  27. 27.
    Müller M, Gross M (2004) Interactive virtual materials. In: Graphics interface, 2004Google Scholar
  28. 28.
    Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M (2004) Point based animation of elastic, plastic and melting objects. In: Symposium on computer animation, pp 141–151, 2004Google Scholar
  29. 29.
    Müller M, Heidelberger B, Teschner M, Gross M (2005) Meshless deformations based on shape matching. ACM Trans Graph 24(3):471–478CrossRefGoogle Scholar
  30. 30.
    Nadler B, Rubin MB (2003) A new 3-d finite element for nonlinear elasticity using the theory of a cosserat point. Int J Solids Struct 40:4585–4614zbMATHCrossRefGoogle Scholar
  31. 31.
    Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2005) Physically based deformable models in computer graphics. Comput Graph Forum 25(4):809–836CrossRefGoogle Scholar
  32. 32.
    Nesme M, Kry P, Jerabkova L, Faure F (2009) Preserving topology and elasticity for embedded deformable models. In: SIGGRAPH computer graphics, 2009Google Scholar
  33. 33.
    O’Brien J, Hodgins J (1999) Graphical models and animation of brittle fracture. In: SIGGRAPH computer Graphics, pp 137–146, 1999Google Scholar
  34. 34.
    Pai DK (2002) Strands: interactive simulation of thin solids using Cosserat models computer graphics forum. Int J Eurograph Assoc 21(3):347–352Google Scholar
  35. 35.
    Platt SM, Badler NI (1981) Animating facial expressions. In: SIGGRAPH computer graphics, pp 245–252, 1981Google Scholar
  36. 36.
    Powell MJD (1990) The theory of radial basis function approximation. University numerical analysis reportGoogle Scholar
  37. 37.
    Sifakis E (2007) Der KG, Fedkiw R (2007) Arbitrary cutting of deformable tetrahedralized objects. In: Symposium on computer animation, 2007Google Scholar
  38. 38.
    Terzopoulos D, Qin H (1994) Dynamic nurbs with geometric constraints for interactive sculpting. ACM Trans Graph 13(2):103–136zbMATHCrossRefGoogle Scholar
  39. 39.
    Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. AMC SIGGRAPH Comput Graph 24(4):205–214Google Scholar
  40. 40.
    Teschner M, Heidelberger B, Muller M, Gross M (2004) A versatile and robust model for geometrically complex deformable solids. In: CGI, 2004Google Scholar
  41. 41.
    Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Benjamin Gilles
    • 1
    Email author
  • François Faure
    • 2
  • Guillaume Bousquet
    • 2
  • Dinesh K. Pai
    • 3
  1. 1.INRIA, LIRMM-CNRSUniversity of MontpellierMontpellierFrance
  2. 2.INRIA, LJK-CNRSUniversity of GrenobleGrenobleFrance
  3. 3.University of British ColumbiaVancouverCanada

Personalised recommendations