The Branes: Three Viewpoints

  • Pietro Giuseppe Frè


This chapter deals with the brane/bulk dualism. The first section contains a conceptual outline where the three sided view of branes as 1) classical solitonic solutions of the bulk theory, 2) world volume gauge-theories described by suitable world-volume actions endowed with κ-supersymmetry and 3) boundary states in the superconformal field theory description of superstring vacua is spelled out. Next a New First Order Formalism, invented by the author of this book at the beginning of the XXI century and allowing for an elegant and compact construction of κ-supersymmetric Born-Infeld type world-volume actions on arbitrary supergravity backgrounds is described. It is subsequently applied to the case of the D3-brane, both as an illustration and for the its intrinsic relevance in the gauge/gravity correspondence. The last sections of the chapter are devoted to the presentations of branes as classical solitonic solutions of the bulk theory. General features of the solutions in terms of harmonic functions are presented including also a short review of domain walls and some sketchy description of the Randall-Sundrun mechanism.


Domain Wall Gauge Field Supersymmetry Transformation Order Formalism World Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Green, M.B., Schwarz, J.H.: Supersymmetrical dual string theory. Nucl. Phys. B 181, 502 (1981) ADSCrossRefGoogle Scholar
  2. 2.
    Green, M.B., Schwarz, J.H.: Supersymmetrical dual string theory (II). Phys. Lett. B 109, 444 (1982) ADSCrossRefGoogle Scholar
  3. 3.
    Duff, M.J., Khuri, R.R., Lu, J.X.: String solitons. Phys. Rep. 259, 213–326 (1995). hep-th/9412184 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Tonin, M.: Consistency condition for kappa anomalies and superspace constraints in quantum heterotic superstrings. Int. J. Mod. Phys. A 4, 1983 (1989) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Grisaru, M.T., Howe, P., Mezincescu, L., Nilsson, B., Townsend, P.K.: N=2 superstrings in a supergravity background. Phys. Lett. B 162, 116 (1985) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Townsend, P.K.: Spacetime supersymmetric particles and strings in background fields. In: D’Auria, R., Frè, P. (eds.) Superunification and Extra Dimensions, p. 376. World Scientific, Singapore (1986) Google Scholar
  7. 7.
    Castellani, L., D’Auria, R., Frè, P.: Supergravity and Superstring Theory: A Geometric Perspective. World Scientific, Singapore (1990) Google Scholar
  8. 8.
    Dall’Agata, G., Fabbri, D., Fraser, C., Frè, P., Termonia, P., Trigiante, M.: The Osp(8|4) singleton action from the supermembrane. Nucl. Phys. B 542, 157 (1999). hep-th/9807115 ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Billó, M., Cacciatori, S., Denef, F., Frè, P., Van Proeyen, A., Zanon, D.: The 0-brane action in a general D=4 supergravity background. Class. Quantum Gravity 16, 2335–2358 (1999). hep-th/9902100 ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Castellani, L., Pesando, I.: The complete superspace action of chiral N=2 D=10 supergravity. Nucl. Phys. B 226, 269 (1983) CrossRefGoogle Scholar
  11. 11.
    Pesando, I.: A kappa fixed type IIB superstring action on AdS5×S5. J. High Energy Phys. 11, 002 (1998). hep-th/9808020 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103, 207–211 (1981) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Nambu, Y.: Lectures at Copenhagen Symposium (1970) Google Scholar
  14. 14.
    Goto, T.: Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theor. Phys. 46, 1560 (1971) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Bertolini, M., Ferretti, G., Frè, P., Trigiante, M., Campos, L., Salomonson, P.: Supersymmetric 3-branes on smooth ALE manifolds with flux. Nucl. Phys. B 617, 3–42 (2001). hep-th/0106186 ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Bertolini, M., Di Vecchia, P., Frau, M., Lerda, A., Marotta, R., Pesando, I.: Fractional D-branes and their gauge duals. J. High Energy Phys. 0102, 014 (2001). hep-th/0011077 ADSCrossRefGoogle Scholar
  17. 17.
    Bertolini, M., Di Vecchia, P., Frau, M., Lerda, A., Marotta, R.: N=2 gauge theories on systems of fractional D3/D7 branes. Nucl. Phys. B 621, 157 (2002). hep-th/0107057 ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Di Vecchia, P., Lerda, A., Merlatti, P.: N=1 and N=2 super Yang-Mills theories from wrapped branes. hep-th/0205204
  19. 19.
    Billó, M., Gallot, L., Liccardo, A.: Classical geometry and gauge duals for fractional branes on ALE orbifolds. Nucl. Phys. B 614, 254 (2001). hep-th/0105258 ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    Howe, P.S., Tucker, R.W.: A locally supersymmetric and reparameterization invariant action for a spinning membrane. J. Phys. A 10, L155–L158 (1977) ADSCrossRefGoogle Scholar
  21. 21.
    Howe, P.S., Sezgin, E.: Superbranes. Phys. Lett. B 390, 133–142 (1997). hep-th/9607227 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Howe, P.S., Sezgin, E.: D=11, p=5. Phys. Lett. B 394, 62–66 (1997). hep-th/9611008 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Howe, P.S., Raetzel, O., Sezgin, E.: On brane actions and superembeddings. J. High Energy Phys. 9808, 011 (1998). hep-th/9804051 MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Polchinski, J.: String Theory, vol. 1. Cambridge University Press, Cambridge (2005) Google Scholar
  25. 25.
    Polchinski, J.: String Theory, vol. 2. Cambridge University Press, Cambridge (2005) Google Scholar
  26. 26.
    Born, M., Infeld, L.: Foundation of the new field theory. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 144, 425–451 (1934) ADSCrossRefGoogle Scholar
  27. 27.
    Frè, P., Modesto, L.: A new first order formalism for k-supersymmetric Born-Infeld actions: The D3 brane example. Class. Quantum Gravity 19, 5591 (2002). arXiv:hep-th/0206144 ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Fradkin, E.S., Tseytlin, A.A.: Phys. Lett. B 163, 425 (1985) MathSciNetGoogle Scholar
  29. 29.
    Tseytlin, A.A.: Self-duality of Born-Infeld action and Dirichlet 3-brane of type IIB superstring. Nucl. Phys. B 469, 51 (1996). hep-th/9602064 MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Cederwall, M., von Gussich, A., Nilsson, B.E.W., Westwrberg, A.: The Dirichlet super-three-brane in ten-dimensional type II B supergravity. Nucl. Phys. B 490, 163–178 (1997). hep-th/9610148 ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Pasti, P., Sorokin, D., Tonin, M.: Covariant action for a D=11 five-brane with the chiral field. Phys. Lett. B 398, 41–46 (1997). hep-th/9701037 MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Bandos, I., Pasti, P., Sorokin, D., Tonin, M.: Superbrane actions and geometrical approach. DFPD 97/TH/19, ICTP IC/97/44. hep-th/9705064
  33. 33.
    Bandos, I., Pasti, P., Sorokin, D., Tonin, M., Volkov, D.: Superstrings and supermembranes in the doubly supersymmetric geometrical approach. Nucl. Phys. B 446, 79–118 (1995). hep-th/9501113 MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Bandos, I., Sorokin, D., Volkov, D.: On the generalized action principle for superstrings and supermembranes. Phys. Lett. B 352, 269–275 (1995). hep-th/9502141 ADSCrossRefGoogle Scholar
  35. 35.
    Bandos, I., Sorokin, D., Tonin, M.: Generalized action principle and superfield equations of motion for d=10 (Dp)-branes. Nucl. Phys. B 497, 275–296 (1997). hep-th/9701127 MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Bandos, I., Lechner, K., Nurmagambetov, A., Pasti, P., Sorokin, D., Tonin, M.: Covariant action for the super-five-brane of M-theory. Phys. Rev. Lett. 78, 4332–4334 (1997). hep-th/9701149 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Bergshoeff, E., Kallosh, R., Ortin, T., Papadopoulos, G.: Kappa-symmetry, supersymmetry and intersecting branes. Nucl. Phys. B 502, 149–169 (1997). hep-th/9705040 MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Frè, P.: Gaugings and other supergravity tools of p-brane physics. In: Lectures given at the RTN School Recent Advances in M-theory, Paris, 1–8 February 2001, IHP. hep-th/0102114
  39. 39.
    Trigiante, M.: Dualities in supergravity and solvable lie algebras. PhD thesis. hep-th/9801144
  40. 40.
    D’Auria, R., Frè, P.: BPS black holes in supergravity: duality groups, p-branes, central charges and the entropy. In: Frè, P. et al. (eds.) Classical and Quantum Black Holes. Lecture Notes for the 8th Graduate School in Contemporary Relativity and Gravitational Physics: The Physics of Black Holes, SIGRAV 98, Villa Olmo, Italy, 20–25 Apr. 1998, pp. 137–272, 1999. hep-th/9812160 Google Scholar
  41. 41.
    The literature on this topic is quite extended. As a general review, see the lecture notes: Stelle, K.: Lectures on supergravity p-branes. Lectures presented at 1996 ICTP Summer School, Trieste. hep-th/9701088
  42. 42.
    For a recent comprehensive updating on M-brane solutions see also Townsend, P.K.: M-theory from its superalgebra. Talk given at the NATO Advanced Study Institute on Strings, Branes and Dualities, Cargese, France, 26 May–14 June, 1997. hep-th/9712004
  43. 43.
    Castellani, L., Ceresole, A., D’Auria, R., Ferrara, S., Frè, P., Trigiante, M.: G/H M-branes and AdSp+2 geometries. Nucl. Phys. B 527, 142 (1998). hep-th/9803039 ADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). hep-th/9711200 MathSciNetADSzbMATHGoogle Scholar
  45. 45.
    Claus, P., Kallosh, R., Van Proeyen, A.: Nucl. Phys. B 518, 117 (1998) ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Claus, P., Kallosh, R., Kumar, J., Townsend, P., Van Proeyen, A.: hep-th/9801206
  47. 47.
    Fabbri, D., Frè, P., Gualtieri, L., Termonia, P.: M-theory on AdS4×M 111: The complete Osp(2|4)×SU(3)×SU(2) spectrum from harmonic analysis. hep-th/9903036
  48. 48.
    Fabbri, D., Frè, P., Gualtieri, L., Reina, C., Tomasiello, A., Zaffaroni, A., Zampa, A.: 3D superconformal theories from Sasakian seven-manifolds: new non-trivial evidence for AdS4/CFT3. Nucl. Phys. B 577, 547 (2000). hep-th/9907219 ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Klebanov, I., Witten, E.: Superconformal field theory on threebranes at a Calabi Yau singularity. Nucl. Phys. B 536, 199 (1998). hep-th/9807080 MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Billó, M., Fabbri, D., Frè, P., Merlatti, P., Zaffaroni, A.: Shadow multiplets in AdS4/CFT3 and the superHiggs mechanism. hep-th/0005220
  51. 51.
    Gubser, S.S.: Einstein manifolds and conformal field theories. Phys. Rev. D 59, 025006 (1999). hep-th/9807164 MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Gubser, S.S., Klebanov, I.: Baryons and domain walls in an N=1 superconformal gauge theory. Phys. Rev. D 58, 125025 (1998). hep-th/9808075 MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Ceresole, A., Dall’Agata, G., D’Auria, R., Ferrara, S.: M-theory on the Stiefel manifold and 3d conformal field theories. J. High Energy Phys. 0003, 011 (2000). hep-th/9912107 MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Ceresole, A., Dall’Agata, G., D’Auria, R., Ferrara, S.: Spectrum of type IIB supergravity on AdS5×T 11: Predictions on N=1 SCFT’s. hep-th/9905226
  55. 55.
    Ceresole, A., Dall’Agata, G., D’Auria, R.: KK spectroscopy of type IIB supergravity on AdS5×T 11. hep-th/9907216
  56. 56.
    Lü, H., Pope, C.N., Townsend, P.K.: Domain walls form anti de sitter space. Phys. Lett. B 391, 39 (1997). hep-th/9607164 MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. 57.
    Bergshoeff, E., van der Schaar, J.P.: On M-9-branes. Class. Quantum Gravity 16, 23 (1999). hep-th/9806069 ADSzbMATHCrossRefGoogle Scholar
  58. 58.
    Cvetič, M., Soleng, H.H.: Naked singularities in dilatonic domain wall space-time. Phys. Rev. D 51, 5768 (1995). hep-th/9411170 MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Cvetič, M., Soleng, H.H.: Supergravity domain walls. Phys. Rep. 282, 159 (1997). hep-th/9604090 MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Cvetič, M., Lü, H., Pope, C.N.: Domain walls with localised gravity and domain wall/QFT correspondence. hep-th/0007209
  61. 61.
    Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 23 (1999). hep-th/9906064 Google Scholar
  62. 62.
    Lykken, J., Randall, L.: The shape of gravity. hep-th/9908076
  63. 63.
    Randall, L., Sundrum, R.: A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). hep-th/9905221 MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pietro Giuseppe Frè
    • 1
  1. 1.Dipartimento di Fisica TeoricaUniversity of TorinoTorinoItaly

Personalised recommendations