An Upper Bound Algorithm for Limit and Shakedown Analysis of Bounded Linearly Kinematic Hardening Structures

  • Phu Tinh Phạm
  • Manfred StaatEmail author


The paper develops a new FEM based algorithm for shakedown analysis of structures made of elastic plastic bounded linearly kinematic hardening material. The hardening effect is simulated by using a two-surface plastic model to bound the Melan-Prager model. The initial yield surface can translate inside the bounding surface, without changing its shape and size. The translated yield surface may touch the bounding surface and ratcheting may occur with clear benefit of hardening. Or it may not touch the bounding surface, alternating plasticity may occur and there is no effect of hardening. The direct calculation of plastic limit and shakedown bounds is considered as a nonlinear programming problem. The upper bound of the shakedown load is obtained as the minimum of the plastic dissipation function, which is based on the von Mises yield criterion.


Gaussian Point Kinematic Hardening Bauschinger Effect Plastic Collapse Pure Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of Phú Tình Phạm has been supported by the Ministry of Education and Training of Vietnam (MOET) through the 322 project, and Aachen University of Applied Sciences, Germany.


  1. 1.
    Bleich: Über die Bemessung statisch unbestimmter Stahltragwerke unter Berücksichtigung des elastisch-plastischen Verhaltens des Baustoffes. Bauingenieur 19/20, 261–266 (1932) Google Scholar
  2. 2.
    Bodovillé, G., de Saxcé, G.: Plasticity with non-linear kinematic hardening—modelling and shakedown analysis by the bipotential approach. Eur. J. Mech. A, Solids 20, 99–112 (2001) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bouby, C., de Saxcé, G., Tritsch, J.-B.: A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening. Int. J. Solids Struct. 43, 2670–2692 (2006) zbMATHCrossRefGoogle Scholar
  4. 4.
    Gokhfeld, D.A., Cherniavsky, O.F.: Limit Analysis of Structures at Thermal Cycling. Sijthoff & Noordhoff, Amsterdam (1980) Google Scholar
  5. 5.
    Koiter, W.T.: General theorems of elastic–plastic solids. In: Sneddon, J.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 1, pp. 67–221. North-Holland, Amsterdam (1960) Google Scholar
  6. 6.
    Heitzer, M., Staat, M.: Basic reduction technique for limit and shakedown problems. In: Staat, M., Heitzer, M. (eds.) Numerical Methods for Limit and Shakedown Analysis—Deterministic and Probabilistic Problems. NIC Series, vol. 15. John von Neumann Institute for Computing, Jülich (2003).
  7. 7.
    Heitzer, M., Staat, M., Reiners, H., Schubert, F.: Shakedown and ratcheting under tension–torsion loadings—analysis and experiments. Nucl. Eng. Des. 225, 11–26 (2003). doi: 10.1016/S0029-5493(03)00134-1 CrossRefGoogle Scholar
  8. 8.
    Makrodimopoulos, A., Bisbos, C.: Shakedown analysis of plane stress problems via SOCP. In: Staat, M., Heitzer, M. (eds.) Numerical Methods for Limit and Shakedown Analysis—Deterministic and Probabilistic Problems. NIC Series, vol. 15. John von Neumann Institute for Computing, Jülich (2003).
  9. 9.
    Melan, E.: Theorie statisch unbestimmter Systeme aus ideal plastischem Baustoff. Sitzber. Akad. Wiss. Wien IIa 145, 195–218 (1936) Google Scholar
  10. 10.
    Melan, E.: Zur Plastizität des räumlichen Kontinuums. Ing.-Arch. 8, 116–126 (1938) CrossRefGoogle Scholar
  11. 11.
    Nguyễn, Q.S.: On shakedown analysis in hardening. J. Mech. Phys. Solids 51, 101–125 (2003) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Phạm, Ð.C.: Shakedown static and kinematic theorems for elastic-plastic limited linear kinematic-hardening solids. Eur. J. Mech. A, Solids 24, 35–45 (2005) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Phạm, Ð.C.: Shakedown theory for elastic plastic kinematic hardening bodies. Int. J. Plast. 23, 1240–1259 (2007) CrossRefGoogle Scholar
  14. 14.
    Prager, W.: A new method of analyzing stress and strain in work hardening plastic solids. J. Appl. Mech. 23, 493–496 (1956) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Staat, M., Heitzer, M.: LISA—a European project for FEM-based limit and shakedown analysis. Nucl. Eng. Des. 206(2–3), 151–166 (2001). doi: 10.1016/S0029-5493(00)00415-5 CrossRefGoogle Scholar
  16. 16.
    Staat, M., Heitzer, M.: The restricted influence of kinematic hardening on shakedown loads. In: Proceedings of WCCM V, 5th World Congress on Computational Mechanics, Vienna, Austria, July 7–12 (2002). Google Scholar
  17. 17.
    Stein, E., Huang, Y.J.: Shakedown for systems of kinematic hardening materials. In: Mróz, Z., Weichert, D., Doroz, S. (eds.) Inelastic Behaviour of Structures Under Variables Loads, pp. 33–50. Kluwer Academic, Norwell (1995) CrossRefGoogle Scholar
  18. 18.
    Stein, E., Zhang, G.: Theoretical and numerical shakedown analysis for kinematic hardening materials. Computational plasticity. Fundamentals and applications. In: Owen, D.R.J., Oñate, E., Hinton, E. (eds.) Proc. 3rd Conf. on Computational Plasticity, Barcelona, Spain, 6–10th April, pp. 1–26. Pineridge, Swansea (1992) Google Scholar
  19. 19.
    Stein, E., Zhang, G., König, J.A.: Shakedown with nonlinear strain hardening including structural computation using finite element method. Int. J. Plast. 8, 1–31 (1992) zbMATHCrossRefGoogle Scholar
  20. 20.
    Stein, E., Zhang, G., Mahnken, R.: Shakedown analysis for perfectly plastic and kinematic hardening materials. In: Stein, E. (ed.) Progress in Computational Analysis of Inelastic Structures, pp. 175–244. Springer, Wien (1993) Google Scholar
  21. 21.
    Vũ, Ð.K.: Dual limit and shakedown analysis of structures. PhD Thesis, Université de Liège, Belgium (2001) Google Scholar
  22. 22.
    Weichert, D., Groß-Weege, J.: The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition. Int. J. Mech. Sci. 30, 757–767 (1988) zbMATHCrossRefGoogle Scholar
  23. 23.
    Zhang, G.: Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw. kinematisch verfestigendem material. Ph.D. Thesis, Universität Hannover, Germany (1991) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Campus Jülich, Institute of BioengineeringAachen University of Applied SciencesJülichGermany

Personalised recommendations