Differential Geometry and Mathematical Physics pp 427-490 | Cite as
Hamiltonian Systems
Abstract
We start with an introductory part, including the Legendre transformation, a brief discussion of linear nonholonomic systems and a presentation of three important classes of examples: the geodesic flow, Hamiltonian systems on Lie group manifolds and Hamiltonian systems on coadjoint orbits. We finish this part by showing how to deal with time-dependent Hamiltonian systems. Next, we investigate the structure of regular energy surfaces and discuss the problem of the existence of periodic integral curves for autonomous Hamiltonian systems. This leads us to the famous Weinstein conjecture and to symplectic capacities. Thereafter, we investigate the behaviour of a Hamiltonian system near a critical integral curve. We show that periodic integral curves generically come in orbit cylinders and prove the Lyapunov Center Theorem. We derive the Birkhoff normal form both for symplectomorphisms near an elliptic fixed point and for the Hamiltonian of a system near an equilibrium. The normal form of the Hamiltonian induces a foliation of the phase space into invariant tori so that, in the normal form approximation, the theory becomes integrable. Moreover, we prove the Birkhoff-Lewis Theorem, which states that under a certain nonresonance condition, near a periodic integral curve there exist infinitely many periodic points which lie on the same energy surface. Thereafter, we discuss some aspects of stability, with the main emphasis on systems with two degrees of freedom. In the final two sections we study time-dependent Hamiltonian systems. This includes a discussion of the stability problem of time-periodic systems with emphasis on parametric resonance and an introduction to the famous Arnold conjecture about the number of fixed points of Hamiltonian symplectomorphisms.
Keywords
Hamiltonian System Integral Curve Integral Curf Coadjoint Orbit Hamiltonian Vector FieldReferences
- 1.Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978) MATHGoogle Scholar
- 3.Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) MATHGoogle Scholar
- 11.Arnold, V.I.: Proof of A.N. Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18, 9–36 (1963) CrossRefGoogle Scholar
- 12.Arnold, V.I.: Small divisor problems in classical and celestial mechanics. Russ. Math. Surv. 18, 85–192 (1963) CrossRefGoogle Scholar
- 18.Arnold, V.I.: Mathematische Methoden der klassischen Mechanik. Birkhäuser, Basel (1988) Google Scholar
- 22.Arnold, V.I.: Symplectic geometry and topology. J. Math. Phys. 41(6), 3307–3343 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
- 26.Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. In: Arnold, V.I. (ed.) Dynamical Systems III. Springer, Berlin (1988) Google Scholar
- 35.Bates, L., Śniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
- 45.Birkhoff, G.D.: Proof of Poincaré’s geometric theorem. Trans. Am. Math. Soc. 14, 14–22 (1913) MathSciNetMATHGoogle Scholar
- 46.Birkhoff, G.D.: An extension of Poincaré’s last geometric theorem. Acta Math. 47, 297–311 (1925) MathSciNetCrossRefGoogle Scholar
- 47.Birkhoff, G.D.: Dynamical Systems. American Mathematical Society Colloquium Publications, vol. IX (1927) MATHGoogle Scholar
- 48.Birkhoff, G.D., Lewis, D.C.: On the periodic motions near a given periodic motion of a dynamical system. Ann. Mat. Pura Appl. 12, 117–133 (1933) MathSciNetMATHCrossRefGoogle Scholar
- 63.Chierchia, L.: Kolmogorov-Arnold-Moser (KAM) theory. In: Meyers, R.A. (editor-in-chief) Encyclopedia of Complexity and Systems Science, pp. 5064–5091. Springer, Berlin (2009) Google Scholar
- 66.Conley, C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math. 73, 33–49 (1983) MathSciNetADSMATHCrossRefGoogle Scholar
- 75.Douady, R.: Une démonstration directe de l’équivalence des théorèmes de tores invariants pour difféomorphismes et champs des vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 295, 201–204 (1982) MathSciNetMATHGoogle Scholar
- 76.Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry—Methods and Applications. Springer, Berlin (1992) MATHCrossRefGoogle Scholar
- 84.Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics. Math. Z. 200, 355–378 (1990) MathSciNetCrossRefGoogle Scholar
- 85.Eliashberg, Y.: Estimates on the number of fixed points of area preserving transformations. Syktyvkar University preprint (1979) Google Scholar
- 88.Fadell, E., Rabinowitz, P.: Generalized cohomological index theories for the group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–174 (1978) MathSciNetADSMATHCrossRefGoogle Scholar
- 93.Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988) MathSciNetMATHCrossRefGoogle Scholar
- 94.Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 513–547 (1989) MathSciNetCrossRefGoogle Scholar
- 100.Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariants. Topology 38, 933–1048 (1999) MathSciNetMATHCrossRefGoogle Scholar
- 104.Ginzburg, V.L.: Some remarks on symplectic actions of compact groups. Math. Z. 210, 625–640 (1992) MathSciNetMATHCrossRefGoogle Scholar
- 105.Ginzburg, V.L.: An embedding S 2n−1→ℝ2n, 2n−1≥7, whose Hamiltonian flow has no periodic trajectories. Int. Math. Res. Not. 2, 83–98 (1995) CrossRefGoogle Scholar
- 106.Ginzburg, V.L.: The Weinstein conjecture and the theorems of nearby and almost existence. In: Marsden, J.E., Ratiu, T.S. (eds.) The Breadth of Symplectic and Poisson Geometry. Festschrift in Honor of Alan Weinstein, pp. 139–172. Birkhäuser, Basel (2005) Google Scholar
- 135.Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114, 515–563 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
- 136.Hofer, H.: Dynamics, topology and holomorphic curves. In: Proceedings of the International Congress of Mathematicians, Berlin, 1998. Doc. Math., extra vol. I pp. 255–280 (1998) Google Scholar
- 137.Hofer, H., Salamon, D.: Floer homology and Novikov rings. In: The Floer Memorial Volume. Progress in Mathematics, vol. 133, pp. 483–524. Birkhäuser, Basel (1995) CrossRefGoogle Scholar
- 138.Hofer, H., Zehnder, E.: A new capacity for symplectic manifolds. In: Rabinowitz, P., Zehnder, E. (eds.) Analysis et Cetera, pp. 405–428. Academic Press, San Diego (1990) Google Scholar
- 139.Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser Advanced Texts. Birkhäuser, Basel (1994) MATHCrossRefGoogle Scholar
- 153.José, J.V., Saletan, E.J.: Classical Dynamics. A Contemporary Approach. Cambridge University Press, Cambridge (1998) MATHCrossRefGoogle Scholar
- 165.Klingenberg, W.: Lectures on Closed Geodesics. Grundlehren Math. Wiss., vol. 230. Springer, Berlin (1978) MATHCrossRefGoogle Scholar
- 166.Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley-Interscience, New York (1963) MATHGoogle Scholar
- 168.Kolmogorov, A.N.: On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR 98(4), 527–530 (1954), in Russian MathSciNetMATHGoogle Scholar
- 169.Kolmogorov, A.N.: General theory of dynamical systems and classical mechanics. In: Proc. Int. Congr. Math., vol. 1, Amsterdam, 1954, pp. 315–333 (1957), in Russian. English translation in Abraham, R., Marsden, J.E.: Foundations of Mechanics, pp. 741–757. Benjamin-Cummings, Reading (1978) Google Scholar
- 170.Koon, W.S., Marsden, J.E.: The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Rep. Math. Phys. 40(1), 21–62 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
- 181.Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987) MATHCrossRefGoogle Scholar
- 186.Liu, G., Tian, G.: Floer homology and Arnold conjecture. J. Differ. Geom. 49, 1–74 (1998) MathSciNetMATHGoogle Scholar
- 188.Lyapunov, A.M.: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Toulouse 2, 203–474 (1907) Google Scholar
- 206.McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Clarendon Press, Oxford (1998) MATHGoogle Scholar
- 209.Meixner, J., Schaefke, W.: Mathieusche Funktionen und Sphäroidfunktionen. Grundlehren Math. Wiss., vol. 71. Springer, Berlin (1954), in German Google Scholar
- 216.Morbidelli, A.: Modern Celestial Mechanics. Taylor & Francis, London (2002) Google Scholar
- 217.Moser, J.: On invariant curves of area preserving mappings of the annulus. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 286–294 (1962) Google Scholar
- 219.Moser, J.: A rapidly convergent iteration method and nonlinear partial differential equations I. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 20(2), 265–315 (1966) MATHGoogle Scholar
- 220.Moser, J.: A rapidly convergent iteration method and nonlinear partial differential equations II. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 20(3), 499–533 (1966) Google Scholar
- 224.Moser, J.: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math. 29, 727–747 (1976) ADSMATHCrossRefGoogle Scholar
- 225.Moser, J.: Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff. In: Geometry and Topology. Lecture Notes in Mathematics, vol. 597, pp. 464–494. Springer, Berlin (1977) CrossRefGoogle Scholar
- 226.Moser, J.: Addendum to “Periodic orbits near an equilibrium and a theorem by Alan Weinstein”. Commun. Pure Appl. Math. 31, 529–530 (1978) CrossRefGoogle Scholar
- 240.Poincaré, H.: Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars, Paris (1899) Google Scholar
- 246.Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001) Google Scholar
- 249.Rabinowitz, P.: Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 31, 157–184 (1978) MathSciNetCrossRefGoogle Scholar
- 260.Salamon, D.: Lectures on Floer homology. In: Eliashberg, Y., Traynor, L. (eds.) Symplectic Geometry and Topology. IAS/Park City Mathematics Series, vol. 7, pp. 143–230 (1999) Google Scholar
- 269.Schwarz, M.: Introduction to symplectic Floer homology. In: Thomas, C.B. (ed.) Contact and Symplectic Geometry. Publ. Newton Inst., vol. 8, pp. 151–170. Cambridge University Press, Cambridge (1996) Google Scholar
- 270.Sevryuk, M.B.: Some problems of KAM-theory: conditionally-periodic motion in typical systems. Russ. Math. Surv. 50(2), 341–353 (1995) MathSciNetMATHCrossRefGoogle Scholar
- 273.Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Grundlehren Math. Wiss., vol. 187. Springer, Berlin (1971) MATHCrossRefGoogle Scholar
- 286.Thirring, W.: Lehrbuch der Mathematischen Physik. Band 1: Klassische Dynamische Systeme. Springer, Berlin (1977), in German Google Scholar
- 299.Viterbo, C.: A proof of the Weinstein conjecture in ℝ2n. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4, 337–357 (1987) MathSciNetMATHGoogle Scholar
- 304.Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Invent. Math. 20, 47–57 (1973) MathSciNetADSMATHCrossRefGoogle Scholar
- 306.Weinstein, A.: Periodic orbits for convex Hamiltonian systems. Ann. Math. 108, 507–518 (1978) MATHCrossRefGoogle Scholar
- 307.Weinstein, A.: On the hypothesis of Rabinowitz’s periodic orbit theorems. J. Differ. Equ. 33, 353–358 (1979) MATHCrossRefGoogle Scholar