Integrability

  • Gerd Rudolph
  • Matthias Schmidt
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

In this chapter, we study the concept of integrability of Hamiltonian systems in a systematic way. We start with the very notion of an integrable system and with a number of examples: the two-body problem, the two-centre problem, the top, the spherical pendulum and the Toda lattice. Thereafter, we analyse Lax pairs in the context of Hamiltonian systems on coadjoint orbits. In particular, we show that the Toda lattice can be understood in this framework. Next, we study the local geometric structure of integrable systems. We prove the Arnold Theorem, discuss the relation with symplectic reduction and present the construction of local action and angle variables in detail. As an application, we construct action and angle variables for a number of examples. We also show that action and angle variables are well adapted to the study of small perturbations of integrable systems. Thereafter, we give an introduction to global aspects in the spirit of Nekhoroshev and Duistermaat, with some emphasis on monodromy. This phenomenon will be illustrated in detail for the case of the spherical pendulum. Finally, we present a generalization to the concept of noncommutative integrability in the sense of Mishchenko and Fomenko. We prove both the Nekhoroshev Theorem and the Mishchenko-Fomenko Theorem and illustrate the latter for the case of the Euler top.

Keywords

Angle Variable Parallel Transport Invariant Torus Toda Lattice Coadjoint Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978) MATHGoogle Scholar
  2. 5.
    Adler, M.: On a trace functional for formal pseudo-differential operators and symplectic structure of the Korteweg-de Vries equation. Invent. Math. 50, 219–249 (1979) ADSCrossRefMATHGoogle Scholar
  3. 7.
    Andoyer, H.: Cours de Mécanique Céleste. Gauthier-Villars, Paris (1923) MATHGoogle Scholar
  4. 18.
    Arnold, V.I.: Mathematische Methoden der klassischen Mechanik. Birkhäuser, Basel (1988) Google Scholar
  5. 23.
    Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, Elmsford (1968) Google Scholar
  6. 26.
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. In: Arnold, V.I. (ed.) Dynamical Systems III. Springer, Berlin (1988) Google Scholar
  7. 28.
    Audin, M., Cannas da Silva, A., Lerman, E.: Symplectic Geometry of Integrable Systems. Birkhäuser, Basel (2003) CrossRefMATHGoogle Scholar
  8. 34.
    Bates, L., Śniatycki, J.: On action-angle variables. Arch. Ration. Mech. Anal. 120, 337–343 (1992) CrossRefMATHGoogle Scholar
  9. 43.
    Benettin, G.: The elements of Hamiltonian perturbation theory. In: Benest, D., Froeschle, C., Lega, E. (eds.) Hamiltonian Systems and Fourier Analysis, pp. 1–98. Cambridge Scientific, Cambridge (2004) Google Scholar
  10. 55.
    Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139. Springer, Berlin (1997) MATHGoogle Scholar
  11. 67.
    Cordani, B.: The Kepler Problem. Birkhäuser, Basel (2003) CrossRefMATHGoogle Scholar
  12. 68.
    Coulson, C.A., Joseph, A.: A constant of the motion for the two-centre Kepler problem. Int. J. Quant. Chem. 1(4), 337–347 (1967) ADSCrossRefGoogle Scholar
  13. 69.
    Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997) CrossRefMATHGoogle Scholar
  14. 71.
    Dazord, P., Delzant, Th.: Le problème général des variables actions-angles. J. Differ. Geom. 26, 223–251 (1987) MathSciNetMATHGoogle Scholar
  15. 77.
    Duflo, M., Vergne, M.: Une propriété de la représentation coadjointe d’une algèbre de Lie. C. R. Acad. Sci. Paris Sér. A-B 268, A583–A585 (1969) MathSciNetGoogle Scholar
  16. 80.
    Duistermaat, J.J.: On global action angle coordinates. Commun. Pure Appl. Math. 33, 686–706 (1980) CrossRefMathSciNetGoogle Scholar
  17. 83.
    Efstathiou, K., Joyeux, M., Sadovskii, D.A.: Global bending quantum number and the absence of monodromy in the HCN-CNH molecule. Phys. Rev. A 69, 032504 (2004) ADSCrossRefGoogle Scholar
  18. 89.
    Fasso, F.: The Euler-Poinsot top: a non-commutatively integrable system without global action-angle coordinates. Z. Angew. Math. Phys. 47, 953–976 (1996) CrossRefMathSciNetMATHGoogle Scholar
  19. 91.
    Fiorani, E., Sardanashvily, G.: Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds. J. Math. Phys. 48, 032901 (2007) ADSCrossRefMathSciNetGoogle Scholar
  20. 113.
    Grondin, L., Sadovskii, D.A., Zhilinskii, B.I.: Monodromy as topological obstruction to global action-angle variables in systems with coupled angular momenta and rearrangement of bands in quantum spectra. Phys. Rev. A 65, 012105 (2002) ADSCrossRefGoogle Scholar
  21. 116.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984) MATHGoogle Scholar
  22. 140.
    Hoppe, J.: Lectures on Integrable Systems. Lecture Notes in Physics. Springer, Berlin (1992) MATHGoogle Scholar
  23. 154.
    Jovanovic, B.: Symmetries and integrability. Publ. Inst. Math. (Belgr.) 84(98), 1–36 (2008) CrossRefMathSciNetGoogle Scholar
  24. 155.
    Kac, M., van Moerbeke, P.: A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA 72, 2879–2880 (1975) ADSCrossRefMATHGoogle Scholar
  25. 166.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley-Interscience, New York (1963) MATHGoogle Scholar
  26. 171.
    Kostant, B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 39, 195–338 (1979) CrossRefMathSciNetGoogle Scholar
  27. 173.
    Krichever, I.M.: Algebraic curves and nonlinear difference equations. Usp. Mat. Nauk 33(4), 215–216 (1978), in Russian MathSciNetMATHGoogle Scholar
  28. 181.
    Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Reidel, Dordrecht (1987) CrossRefMATHGoogle Scholar
  29. 189.
    Markus, L., Meyer, K.R.: Generic Hamiltonian Systems are Neither Integrable nor Ergodic. Mem. Am. Math. Soc., vol. 144 (1974) Google Scholar
  30. 199.
    Massey, W.S.: A Basic Course in Algebraic Topology. Graduate Texts in Mathematics, vol. 127. Springer, New York (1991) MATHGoogle Scholar
  31. 214.
    Mishchenko, A.S., Fomenko, A.T.: A generalized Liouville method for the integration of Hamiltonian systems. Funct. Anal. Appl. 12, 113–121 (1978) CrossRefMATHGoogle Scholar
  32. 221.
    Moser, J.: On the construction of almost periodic solutions for ordinary differential equations. In: Proceedings of the International Conference on Functional Analysis and Related Topics, Tokyo, pp. 60–67 (1969) Google Scholar
  33. 223.
    Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975) ADSCrossRefMATHGoogle Scholar
  34. 228.
    Nekhoroshev, L.: Action-angle coordinates and their generalizations. Trans. Mosc. Math. Soc. 26, 180–198 (1972) Google Scholar
  35. 232.
    Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in Mathematics, vol. 222. Birkhäuser, Basel (2004) MATHGoogle Scholar
  36. 237.
    Perelomov, A.M.: Integrable Systems of Classical Mechanics and Lie Algebras, vol. I. Birkhäuser, Basel (1990) CrossRefGoogle Scholar
  37. 244.
    Pöschel, J.: Über invariante Tori in differenzierbaren Hamiltonschen Systemen. Bonner Math. Schr. 120, 1–103 (1980) Google Scholar
  38. 245.
    Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Commun. Pure Appl. Math. 35, 653–695 (1982) CrossRefMATHGoogle Scholar
  39. 246.
    Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 707–732 (2001) Google Scholar
  40. 258.
    Sadetov, S.T.: A proof of the Mishchenko-Fomenko conjecture. Dokl. Akad. Nauk SSSR 397(6), 751–754 (2004), in Russian MathSciNetGoogle Scholar
  41. 259.
    Salamon, D.: The Kolmogorov-Arnold-Moser theorem. Preprint, ETH-Zürich (1986) Google Scholar
  42. 261.
    Sardanashvily, G.: Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler systems. Int. J. Geom. Methods Mod. Phys. 6(8), 1391–1414 (2009) CrossRefMathSciNetMATHGoogle Scholar
  43. 279.
    Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951) MATHGoogle Scholar
  44. 284.
    Symes, W.: Systems of Toda type, inverse spectral problems and representation theory. Invent. Math. 59, 13–53 (1980) ADSCrossRefMathSciNetMATHGoogle Scholar
  45. 286.
    Thirring, W.: Lehrbuch der Mathematischen Physik. Band 1: Klassische Dynamische Systeme. Springer, Berlin (1977), in German Google Scholar
  46. 302.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman, Glenview (1971). Graduate Texts in Mathematics, vol. 94, Springer (1983) MATHGoogle Scholar
  47. 310.
    Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983) MATHGoogle Scholar
  48. 317.
    Zung, N.T.: Symplectic topology of integrable Hamiltonian systems I: Arnold-Liouville with singularities. Compos. Math. 101, 179–215 (1996) MathSciNetMATHGoogle Scholar
  49. 318.
    Zung, N.T.: Symplectic topology of integrable Hamiltonian systems II: topological classification. Compos. Math. 138, 125–156 (2003) CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gerd Rudolph
    • 1
  • Matthias Schmidt
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations