Soils in Arid and Semiarid Regions: The Past as Key for the Future

  • Bernhard LuckeEmail author
  • Iourii Nikolskii
  • Rupert Bäumler


Growing populations, increasing food demand, and technological advances may soon lead to intensifying land use in semiarid and arid countries through the spread of irrigated agriculture. Improved water harvesting and desalinization technology, coupled with higher efficiency of regenerative energies, might allow to widely extend irrigated areas. While this is a positive development in the light of growing demands for water and food, it presents challenges for land-use planners. Negative examples like Lake Aral make clear that a careful analysis is required before embarking on large-scale irrigation projects.

Soils are central for assessing the impacts of irrigation in the desert. For long-term projects as outlined above, it is insufficient to consider only the present soil distribution. It should also be considered how soils will change under irrigation. In this context, the past is a key for the future, since the modeling of future soil development can be calibrated using reconstructions. Soil surveys which consider the archival role of soils and sediments can partly be used to understand the landscape history and identify risk areas. Paleosols can be evaluated as indicators how changes of moisture availability will affect soil properties and which time frames are involved. This can be coupled with modeling of future soil development. A major methodological challenge for this approach is the use of different parameters and time frames in reconstruction and modeling, which have to be “translated” using experimentally determined relationships.

Long-term, large-scale irrigation in arid regions will mean a significant change of the environment and a departure from the conservative idea of sustainability, toward a concept which has been named “progressive development.” Its success chances depend largely on our understanding and correct prediction of the consequences of man-made changes of the environment.


Arid and semi-arid Dry land Fertility index Paleosols Sustainable development 


  1. Amery H, Wolf A (2000) Water in the Middle East. University of Texas Press, AustinGoogle Scholar
  2. Arnold RW, Szabolcs I, Targulian VO (eds) (1990) Global soil change. IIASA, Laxenburg, p 109Google Scholar
  3. Aydarov IP (1985) Water, salt and nutrient soil regime management in arid zones. Agropromizdat, Moscow (in Russian)Google Scholar
  4. Aydarov I, Nikolskii Y, Jachaturyan V, Korolkov A (1992) La crisis ecologica en la cuenca del Mar Aral por el uso agrícola de los recursos hidraulicos. In: Agricultura Sostenible: Un Enfoque Ecologico, Socioeconomico y el Desarrollo Tecnologico. Memorias de/I Simposio y I Reunion Nacional, Guadalajara, Mexico, pp 79–83 (in Spanish)Google Scholar
  5. Bar-Matthews M, Ayalon A, Kaufmann A (1998) Middle to late holocene (6500 yr period) paleoclimate in the Eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. In: Issar A, Brown N (eds) Water, environment and society in times of climatic change. Kluwer Academic, Dordrecht, pp 203–215Google Scholar
  6. Bäumler R (2001) Vergleichende bodenkundliche Untersuchungen in Hochasien und Kamtschatka. Relief, Boden, Paläoklima 16, Gebrüder Bornträger, MunichGoogle Scholar
  7. Bazzaz F, Sombroek W (1996) Global climate change and agricultural production: direct and indirect effects of changing hydrological, pedological and plant physiological processes. FAO, RomeGoogle Scholar
  8. Bens O, Buczko U, Sieber S, Hüttl R (2006) Spatial variability of O layer thickness and humus forms under different pine beech-forest transformation stages in NE Germany. J Plant Nutr Soil Sci 169(1):5–15CrossRefGoogle Scholar
  9. Castillo-Alvarez M, Nikolskii-Gavrilov I, Ortiz-Solorio CA, Vaquera-Huerta H, Cruz-Bello G, Mejía-Sáenz E, González-Hernández A (2007) Alteración de la fertilidad del suelo por el cambio climático y su efecto en la productividad agrícola. Interciencia 32:368–376Google Scholar
  10. Cordova C, Foley C, Nowell A, Bisson M (2005) Landforms, sediments, soil development and prehistoric site settings in the Madaba-Dhiban Plateau, Jordan. Geoarchaeology 20(1):29–56CrossRefGoogle Scholar
  11. Dokuchaev VV (1883) Russian chernozems (Russkii chernozem). Israel Prog Sci Trans, Jerusalem, 1967. Transl. from Russian by N Kraner. Available from US Dept of Commerce, SpringfieldGoogle Scholar
  12. FAO (1997) Irrigation in the near east region in figures. FAO, RomeGoogle Scholar
  13. FAO-IIASA (2000) Global agroecological zones. Methodology and results of the global agro-ecological zones model. CD-ROM. Versión 1.0Google Scholar
  14. Fisher W, Atkinson K, Beaumont P, Coles A, Gilchrist-Shaw D (1966) Soil survey of Wadi Ziqlab. University of Durham, DurhamGoogle Scholar
  15. Gay C (ed) (2003) Una visión hacia el siglo XXI. El cambio climático en México. UNAM, México, p 220Google Scholar
  16. Grigor’ev AA (1954) Some regularities of geographical zonality, vol 5, Ser Geogr. Izv. Akad. Nauk SSSR, Moscow, pp 5–17 (in Russian)Google Scholar
  17. Gvirtzman G, Wieder M (2001) Climate of the last 53,000 years in the Eastern Mediterranean, based on soil-sequence stratigraphy in the coastal plain of Israel. Quat Sci Rev 20:1827–1849CrossRefGoogle Scholar
  18. Imeson A, Lavee H (1998) Soil erosion and climate change: the transect approach and the influence of scale. Geomorphology 23:219–227CrossRefGoogle Scholar
  19. Issar A (2008) Progressive development in arid environments: adapting the concept of sustainable development to a changing world. Hydrogeol J 16:1229–1231CrossRefGoogle Scholar
  20. Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New YorkGoogle Scholar
  21. Khokhlova OS, Khokhlov AA, Chichagova CC, Morgunova NL (2004) Radiocarbon dating of calcareous accumulations in soils of the holocene chronosequence in the Ural river valley (Cis-Ural Steppe). Euras Soil Sci 37(10):1024–1038Google Scholar
  22. Khresat S, Taimeh A (1998) Properties and characterization of vertisols developed on limestone in a semi-arid environment. J Arid Environ 40:235–244CrossRefGoogle Scholar
  23. Knorr W, Prentice IC, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  24. Lucke B (2008) Demise of the decapolis: past and present desertification in the context of soil development, land use and climate. VDM, SaarbrückenGoogle Scholar
  25. Maher L (2005) The epipaleolithic in context: paleolandscapes and prehistoric occupation in Wadi Ziqlab, Northern Jordan. Dissertation, Department of Anthropology, University of Toronto, TorontoGoogle Scholar
  26. Nikolskii YN (1996) Ecological consequences of irrigation. ICID J 45:59–73Google Scholar
  27. Nikolskii Yu N, Bakhlaeva OS, Contreraz-Benitez A, Ordaz-Chaparro V (2002) Assessment of changes in soil properties as dependent on hydrothermic conditions of lowlands (by the example of Mexico). Euras Soil Sci 35:1031–1036Google Scholar
  28. Nikolskii YN, Castillo-Alvares M, Bakhlaeva OS, Roman-Calleros XA, Maslov BS (2006) The influence of the possible global climate change on the properties of Mexican soils. Euras Soil Sci 39(11):1164–1169CrossRefGoogle Scholar
  29. Pegov SA, Khomyakov PM (1991) Simulation of ecological systems alteration. Gidrometeoizdat, Leningrad (in Russian)Google Scholar
  30. Reichstein M, Kätterer T, Andren O, Ciasis P, Schuize ED, Cramer E, Papale D, Valentini R (2005) Does the temperature sensitivity of decomposition vary with soil organic matter quality? Biogeosci Discuss 2:738–747CrossRefGoogle Scholar
  31. Reuters (2008) Saudi Arabia scraps wheat growing to save water. Accessed 31 Jan 2009
  32. Sellers WD (1965) Physical climatology. University of Ontario Press, ChicagoGoogle Scholar
  33. Tejeda MA, Vazquez IL, Rivas DA (1999) Algoritmos simples para estimar datos mensuales de irradiacion solar y horarios termohigrometricos en la Republica Mexicana. Universidad Veracruzana, VeracruzGoogle Scholar
  34. Torres RE (1995) Agrometeorologia. Editorial Trillas Sa De Cv, MexicoGoogle Scholar
  35. Volobuev VR (1974) Introduction into the energy of pedogenesis. Nauka, Moscow (in Russian)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bernhard Lucke
    • 1
    Email author
  • Iourii Nikolskii
    • 2
  • Rupert Bäumler
    • 1
  1. 1.Institute of GeographyUniversity of Erlangen-NürnbergErlangenGermany
  2. 2.Hidrociencias, Colegio de PostgraduadosTexcocoMexico

Personalised recommendations