Molecular Dynamics Study of Glutathione S-Transferase: Structure and Binding Character of Glutathione

  • Y. Omae
  • H. Saito
  • H. Takagi
  • M. Nishimura
  • M. Iwayama
  • K. Kawaguchi
  • H. Nagao
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

Molecular dynamics simulations of the glutathione S-transferase (GST) dimer in the absence or the presence of glutathione were carried out in order to investigate the binding effects of glutathione on the dynamical structure and thermal stability of the GST dimer in water. Enhanced local fluctuations in the GST dimer backbone were observed in the absence of glutathione. The hydrogen bonds formed between glutathione and the GST dimer were changed in the absence of glutathione, and these hydrogen bonds mediate the binding between the subunits of the GST dimer. The free energy analysis showed that the hydrogen bonds between glutathione and the GST dimer largely contribute to the binding energy of glutathione and the thermal stability of the glutathione-GST dimer.

References

  1. 1.
    Rossjohn J, McKinstry WJ, Oakley AJ, Verger D, Flangan J, Chelvanayagam G, Tan K, Coard PG, Parker MW (1998) Structure 6:309–322CrossRefGoogle Scholar
  2. 2.
    Board PG, Barker RT, Chelvanayagam G, Jermiin LS (1997) Structure 6:309–322Google Scholar
  3. 3.
    Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jorncall H (1985) Proc Natl Acad Sci U S A 82:7202–7206CrossRefGoogle Scholar
  4. 4.
    Meyer DJ, Close B, Pemble SE, Gilmore KS, Fraser GM, Ketter B (1991) Biochem J 274:409–414Google Scholar
  5. 5.
    Meyer D, Thomas M (1995) Biochem J 311:739–742Google Scholar
  6. 6.
    Pemble SE, Wardle AF, Taylor JB (1996) Eur J Biochem 220:645–661Google Scholar
  7. 7.
    Ketterer B, Coles B, Meyer DJ (1983) Environ Heal Perspect 49:59–69CrossRefGoogle Scholar
  8. 8.
    Armstrong RN (1991) Chem Res Toxicol 4:131–140CrossRefGoogle Scholar
  9. 9.
    Caccuri AM, Antonini G, Board PG, Flanagan J, Parker MW, Paolesse R, Turella P, Federici G, Bello ML, Ricci G (2001) J Bio Chem 276:5427–5431CrossRefGoogle Scholar
  10. 10.
    Caccuri AM, Antonini G, Nicotra M, Battistoni A, Bello ML, Board PG, Parker MW, Ricci G (1997) J Bio Chem 272:29681–29686CrossRefGoogle Scholar
  11. 11.
    Stella L, Nicotra M, Ricci G, Rosato N, Di lorio EE (1999) Proteins Struct Funct Bioinform 37:1–9Google Scholar
  12. 12.
    Stella L, Di lorio EE, Nicotra M, Ricci G (1999) Proteins Struct Funct Bioinform 37:10–19CrossRefGoogle Scholar
  13. 13.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  14. 14.
    Cornell WD, Cieplak P, Fould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179CrossRefGoogle Scholar
  15. 15.
    Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) J Chem Phys 79:926CrossRefGoogle Scholar
  16. 16.
    Jack K (2006) Structure in protein chemistry. Garland Science, New YorkGoogle Scholar
  17. 17.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431CrossRefGoogle Scholar
  18. 18.
    Darden T, York D, Pedersen L (1993) J Chem Phys 100:2364Google Scholar
  19. 19.
    Essmann U, Perea L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577CrossRefGoogle Scholar
  20. 20.
    Sigalov G, Fenley A, Onufriv A (2006) J Chem Phys 124:124902CrossRefGoogle Scholar
  21. 21.
    Sigalov G, Scheffel P, Onufriv A (2005) J Chem Phys 122:14511CrossRefGoogle Scholar
  22. 22.
    Karplus M, Kushick JN (1981) Macromolecules 14:325–332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Y. Omae
    • 1
  • H. Saito
    • 1
  • H. Takagi
    • 1
  • M. Nishimura
    • 1
  • M. Iwayama
    • 1
  • K. Kawaguchi
    • 1
  • H. Nagao
    • 1
  1. 1.Faculty of Mathematics and Physics, Institute of Science and EngineeringKanazawa UniversityKanazawaJapan

Personalised recommendations