Molecular Parity Violation and Chirality: The Asymmetry of Life and the Symmetry Violations in Physics

Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

After a brief introduction into some basic asymmetries observed in nature, such as the biomolecular homochirality in living species on earth, the dominance of matter over antimatter in the observable universe, and irreversibility in physical-chemical processes providing a preferred arrow of time, we provide a discussion of the concepts of fundamental symmetries in physics and of the three different kinds of symmetry breakings, spontaneous, de facto, and de lege, by means of the example of the dynamics of chiral molecules. We then give a brief review of the current status of the theory and experiments on molecular parity violation. We discuss the various hypotheses on the origin of biomolecular homochirality and conclude with some cosmological speculations related to the fundamental symmetry breakings. These include possibilities of observing CPT violation in future experiments providing a possible fundamental basis for irreversibility, as well as possibilities for observing heavy “right-handed” neutrinos as one possible basis for “dark matter” in the universe.

Keywords

Dark Matter Symmetry Breaking Parity Violation Spontaneous Symmetry Breaking Normal Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank my colleagues, who are listed more completely in Ref. [23], and Ruth Schüpbach for her help with the manuscript. Particular thanks go to Karen Keppler Albert, who translated most of the manuscript from the previously existing German version into English. I thank also Katharina Al Shamery (née von Puttkamer) for her patience while encouraging me in the preparation of the original German manuscript, and Manfred Eigen for earlier inspiration. To him I dedicate this chapter on the occasion of his 85th birthday. Thanks go also to Erkki Brändas, Jean Maruani, and Kiyoshi Nishikawa for the invitation to Kanazawa and friendly scientific exchange, including the interesting preprint of Arrows of Time and Fundamental Symmetries in Chemical Physics by Erkki Brändas [91]. Our experimental and theoretical work on molecular chirality and parity violation is supported financially by ETH Zürich, the Swiss National Science Foundation and the European Research Council (ERC).

References

  1. 1.
    Eigen M: Stufen zum Leben. Piper, München (1987), The original is in German: „Natürlich gibt es – und zwar nicht nur in bezug auf die historischen Rahmenbedingungen – noch viele offene Fragen, zum Beispiel: Auf welcher Ebene wurde die Händigkeit oder Chiralität der biologischen Makromoleküle entschieden? Wir wissen, daß alle Proteine – soweit sie durch den informations-gesteuerten Syntheseapparat der Zelle produziert werden – ausschliesslich von „links-händigen“ Aminosäuren Gebrauch machen und daher links-gewendelte Strukturen aufbauen. Bei den Nukleinsäuren sind es die „rechts-händigen“ Monomere, die ausgewählt wurden, die allerdings sowohl rechts- als auch links-gewendelte Doppelspiralen ausbilden.“ … „„ Hier gibt es eher ein Zuviel als ein Zuwenig an Antworten. Wir stehen nicht etwa vor irgendeinem Paradoxon, für das es keine Erklärungsmöglichkeiten gäbe. Das Problem ist, daß Physik und Chemie ein Überangebot an alternativen Erklärungen bereit halten. Obwohl Forschergruppen in aller Welt an Fragestellungen dieser Art arbeiten, sind bisher nur wenige der möglichen Mechanismen im Detail experimentell untersucht worden.“Google Scholar
  2. 2.
    Prelog V (1975) Chirality in chemistry. In: Les prix Nobel 1975, Nobel LecturesGoogle Scholar
  3. 3.
    Quack M (2011) Fundamental symmetries and symmetry violations from high resolution molecular spectroscopy: experiment and theory. In: Nishikawa K (ed) Abstract book, XVIth international workshop on quantum systems in chemistry and physics (QSCP XVI), Kanazawa, Japan, 11–17 September 2011, p 76Google Scholar
  4. 4.
    Quack M (2011) Die Asymmetrie des Lebens und die Symmetrieverletzungen der Physik: Molekulare Paritätsverletzung und Chiralität. In: Al-Shamery K (ed) Moleküle aus dem All? Wiley-VCH, Weinheim, pp 277–310Google Scholar
  5. 5.
    Quack M (2011) Fundamental symmetries and symmetry violations from high resolution spectroscopy. In: Quack M, Merkt F (eds) Handbook of high resolution spectroscopy, vol 1. Wiley, Chichester/New York, pp 659–722CrossRefGoogle Scholar
  6. 6.
    Quack M, Merkt F (eds) (2011) Handbook of high resolution spectroscopy. Wiley, Chichester/New YorkGoogle Scholar
  7. 7.
    Merkt F, Quack M (2011) Molecular quantum mechanics and molecular spectra, molecular symmetry, and interaction of matter with radiation. In: Quack M, Merkt F (eds) Handbook of high-resolution spectroscopy, vol 1. Wiley, Chichester, pp 1–55Google Scholar
  8. 8.
    Pasteur L (1848) C R Hebd Séances Acad Sci 26:535Google Scholar
  9. 9.
    Pasteur L (1848) C R Hebd Séances Acad Sci 27:401Google Scholar
  10. 10.
    Pasteur L (1848) Ann Chim Phys 24:442Google Scholar
  11. 11.
    Van’t Hoff JH (1887) La chimie dans l’espace. Bazendijk, RotterdamGoogle Scholar
  12. 12.
    Quack M, Stohner J (2000) Influence of parity violating weak nuclear potentials on vibrational and rotational frequencies in chiral molecules. Phys Rev Lett 84(17):3807–3810CrossRefGoogle Scholar
  13. 13.
    Quack M (2002) Angew Chem Int Ed (Engl) 41:4618–4630Google Scholar
  14. 14.
    Dine M, Kusenko A (2004) Rev Mod Phys 76(1):1–30CrossRefGoogle Scholar
  15. 15.
    Quack M (1999) Intramolekulare Dynamik: Irreversibilität, Zeitumkehrsymmetrie und eine absolute Moleküluhr. Nova Acta Leopoldina 81(Neue Folge (No. 314)):137–173Google Scholar
  16. 16.
    Quack M (1989) Angew Chem Int Ed (Engl) 28(5):571–586Google Scholar
  17. 17.
    Quack M (1993) Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen. In: Jahrbuch 1990–1992 der Akademie der Wissenschaften zu Berlin. W. de Gruyter Verlag, Berlin, pp 467–507Google Scholar
  18. 18.
    Quack M (1993) J Mol Struct 292:171–195CrossRefGoogle Scholar
  19. 19.
    Quack M (1995) Molecular femtosecond quantum dynamics between less than yoctoseconds and more than days: experiment and theory. In: Manz J, Woeste L (eds) Femtosecond chemistry, Proceedings of Berlin conference in femtosecond chemistry, Berlin (March 1993). Verlag Chemie, Weinheim, pp 781–818Google Scholar
  20. 20.
    Quack M (1995) The symmetries of time and space and their violation in chiral molecules and molecular processes. In: Costa G, Calucci G, Giorgi M (eds) Conceptual tools for understanding nature. Proceedings of 2nd international symposium of science and epistemology seminar, Trieste April 1993. World Scientific Publishing, Singapore, pp 172–208Google Scholar
  21. 21.
    Quack M, Stohner J (2005) Chimia 59(7–8):530–538CrossRefGoogle Scholar
  22. 22.
    Quack M, Stohner J, Willeke M (2008) Annu Rev Phys Chem 59:741–769CrossRefGoogle Scholar
  23. 23.
    Quack M (2003) Chimia 57(4):147–160Google Scholar
  24. 24.
    Quack M (1977) Mol Phys 34(2):477–504CrossRefGoogle Scholar
  25. 25.
    Quack M (1983) Detailed symmetry selection rules for chemical reactions. In: Maruani J, Serre J (eds) Symmetries and properties of non-rigid molecules: a comprehensive survey, vol 23: Studies in physical and theoretical chemistry, vol 23. Elsevier Publishing Co., Amsterdam, pp 355–378Google Scholar
  26. 26.
    Quack M (1995) J Mol Struct 347:245–266CrossRefGoogle Scholar
  27. 27.
    Mainzer K (1988) Symmetrien der Natur. Ein Handbuch zur Natur- und Wissenschaftsphilosophie. de Gruyter, BerlinCrossRefGoogle Scholar
  28. 28.
    Lee TD (1988) Symmetries, asymmetries and the world of particles. University of Washington Press, SeattleGoogle Scholar
  29. 29.
    Quack M (1994) On the measurement of CP-violating energy differences in matter-antimatter enantiomers. Chem Phys Lett 231(4–6):421–428CrossRefGoogle Scholar
  30. 30.
    Kuhn B, Rizzo TR, Luckhaus D, Quack M, Suhm MA (1999) J Chem Phys 111(6):2565–2587CrossRefGoogle Scholar
  31. 31.
    Primas H (1981) Chemistry, quantum mechanics and reductionism. Springer, BerlinGoogle Scholar
  32. 32.
    Pfeifer P (1983) Molecular structure derived from first-principles quantum mechanics: two examples. In: Hinze J (ed) Energy storage and redistribution in molecules, Proceedings of two workshops, Bielefeld, June 1980. Plenum Press, New York, pp 315–326Google Scholar
  33. 33.
    Hund F (1927) Z Physik 43:788–804CrossRefGoogle Scholar
  34. 34.
    Hund F (1927) Z Physik 43:805–826CrossRefGoogle Scholar
  35. 35.
    Amann A (1991) J Math Chem 6(1):1–15Google Scholar
  36. 36.
    Fehrensen B, Luckhaus D, Quack M (1999) Chem Phys Lett 300(3–4):312–320CrossRefGoogle Scholar
  37. 37.
    Fehrensen B, Luckhaus D, Quack M (2007) Chem Phys 338(2–3):90–105CrossRefGoogle Scholar
  38. 38.
    Quack M (2004) Time and time reversal symmetry in quantum chemical kinetics. In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry. A tribute to the memory of Per-Olov Löwdin, vol 3. Kluwer Academic Publishers, Dordrecht, pp 423–474Google Scholar
  39. 39.
    Quack M (2006) Electroweak quantum chemistry and the dynamics of parity violation in chiral molecules. In: Naidoo KJ, Brady J, Field MJ, Gao J, Hann M (eds) Modelling molecular structure and reactivity in biological systems, Proceedings of 7th WATOC congress, Cape Town January 2005. Royal Society of Chemistry, Cambridge, pp 3–38Google Scholar
  40. 40.
    Bakasov A, Ha TK, Quack M (1996) Ab initio calculation of molecular energies including parity violating interactions. In: Chela-Flores J, Raulin F (eds) Chemical evolution, physics of the origin and evolution of life, Proceedings of the 4th Trieste conference (1995). Kluwer Academic Publishers, Dordrecht, pp 287–296Google Scholar
  41. 41.
    Bakasov A, Ha TK, Quack M (1998) J Chem Phys 109(17):7263–7285CrossRefGoogle Scholar
  42. 42.
    Bouchiat MA, Bouchiat C (1975) Journal De Physique 36(6):493–509CrossRefGoogle Scholar
  43. 43.
    Hegström RA, Rein DW, Sandars PGH (1980) J Chem Phys 73(5):2329–2341CrossRefGoogle Scholar
  44. 44.
    Mason SF, Tranter GE (1984) The parity-violating energy difference between enantiomeric molecules. Mol Phys 53(5):1091–1111CrossRefGoogle Scholar
  45. 45.
    MacDermott AJ, Tranter GE, Indoe SB (1987) Chem Phys Lett 135(1–2):159–162CrossRefGoogle Scholar
  46. 46.
    Mason SF (1991) Chemical evolution: origins of the elements, molecules and living systems. Clarendon Press, OxfordGoogle Scholar
  47. 47.
    Bakasov A, Quack M (1999) Chem Phys Lett 303(5–6):547–557CrossRefGoogle Scholar
  48. 48.
    Berger R, Quack M (2000) J Chem Phys 112(7):3148–3158CrossRefGoogle Scholar
  49. 49.
    Bakasov A, Berger R, Ha TK, Quack M (2004) Int J Quantum Chem 99(4):393–407CrossRefGoogle Scholar
  50. 50.
    Quack M (1986) Chem Phys Lett 132(2):147–153CrossRefGoogle Scholar
  51. 51.
    Berger R, Quack M (2000) ChemPhysChem 1(1):57–60Google Scholar
  52. 52.
    Berger R (2004) Parity-violation effects in molecules. In: Schwerdtfeger P (ed) Relativistic electronic structure theory, vol. Part 2. Elsevier, Amsterdam, pp 188–288CrossRefGoogle Scholar
  53. 53.
    Laerdahl JK, Schwerdtfeger P (1999) Phys Rev A 60(6):4439–4453CrossRefGoogle Scholar
  54. 54.
    Berger R, Langermann N, van Wüllen C (2005) Phys Rev A 71(4):042105CrossRefGoogle Scholar
  55. 55.
    Horný L, Quack M (2011) On coupled cluster calculations of parity violating potentials in chiral molecules (Discussion contribution). Faraday Discuss 150:152–154Google Scholar
  56. 56.
    Quack M (2011) Frontiers in spectroscopy. Faraday Discuss 150:533–565 (see also pp 123–127 therein)Google Scholar
  57. 57.
    Gottselig M, Quack M, Stohner J, Willeke M (2004) Int J Mass Spectrom 233(1–3):373–384Google Scholar
  58. 58.
    Quack M, Willeke M (2006) J Phys Chem A 110(9):3338–3348CrossRefGoogle Scholar
  59. 59.
    Quack M, Willeke M (2003) Helv Chim Acta 86(5):1641–1652CrossRefGoogle Scholar
  60. 60.
    Gottselig M, Luckhaus D, Quack M, Stohner J, Willeke M (2001) Helv Chim Acta 84(6): 1846–1861CrossRefGoogle Scholar
  61. 61.
    Berger R, Gottselig M, Quack M, Willeke M (2001) Angew Chem Int Ed 40(22):4195–4198CrossRefGoogle Scholar
  62. 62.
    Gottselig M, Quack M, Willeke M (2003) Isr J Chem 43(3–4):353–362CrossRefGoogle Scholar
  63. 63.
    Wiesenfeld L (1988) Mol Phys 64(4):739–745CrossRefGoogle Scholar
  64. 64.
    Beil A, Luckhaus D, Marquardt R, Quack M (1994) Faraday Discuss 99:49–76CrossRefGoogle Scholar
  65. 65.
    Hollenstein H, Luckhaus D, Pochert J, Quack M, Seyfang G (1997) Angew Chem Int Edit 36(1–2):140–143CrossRefGoogle Scholar
  66. 66.
    Bauder A, Beil A, Luckhaus D, Müller F, Quack M (1997) J Chem Phys 106(18):7558–7570CrossRefGoogle Scholar
  67. 67.
    Frank FC (1953) Biochim Biophys Acta 11:459–463CrossRefGoogle Scholar
  68. 68.
    Eigen M, Winkler R (1975) Das Spiel. Piper, MünchenGoogle Scholar
  69. 69.
    Eigen M (1971) Naturwissenschaften 58:465–523CrossRefGoogle Scholar
  70. 70.
    Bolli M, Micura R, Eschenmoser A (1997) Chem Biol 4(4):309–320CrossRefGoogle Scholar
  71. 71.
    Siegel JS (1998) Chirality 10(1–2):24–27Google Scholar
  72. 72.
    Fuss W (2009) Chirality 21(2):299–304Google Scholar
  73. 73.
    Luisi PL (2006) The emergence of life. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  74. 74.
    Bonner WA (1995) Orig Life Evol Biosph 25(1–3):175–190CrossRefGoogle Scholar
  75. 75.
    Kavasmaneck PR, Bonner WA (1977) J Am Chem Soc 99(1):44–50CrossRefGoogle Scholar
  76. 76.
    Kuhn H, Waser J (1983) Self organization of matter and the early evolution of life. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, BerlinGoogle Scholar
  77. 77.
    Meierhenrich U (2008) Aminoacids and the asymmetry of life. Springer, BerlinGoogle Scholar
  78. 78.
    Salam A (1992) Phys Lett B 288(1–2):153–160Google Scholar
  79. 79.
    Salam A (1995) On biological macromolecules and the phase transitions they bring about. In: Costa G, Calucci G, Giorgi M (eds) Conceptual tools for understanding nature. Proceedings 2nd international symposium of science and epistemology seminar, Trieste 1993. World Scientific Publishing, SingaporeGoogle Scholar
  80. 80.
    Chela-Flores J (1991) Chirality 3(5):389–392Google Scholar
  81. 81.
    Yamagata Y (1966) J Theor Biol 11:495–498CrossRefGoogle Scholar
  82. 82.
    Rein DW (1974) J Mol Evol 4(1):15–22CrossRefGoogle Scholar
  83. 83.
    Kondepudi DK, Nelson GW (1985) Nature 314(6010):438–441Google Scholar
  84. 84.
    Janoschek R (1991) Theories on the origin of biomolecular homochirality. In: Janoschek R (ed) Chirality – from weak bosons to the α-helix. Springer, Berlin, pp 18–33Google Scholar
  85. 85.
    Monod J (1970) Le Hasard et la Nécessité – Essai sur la philosophie naturelle de la biologie moderne. Editions du Seuil, ParisGoogle Scholar
  86. 86.
    Quack M (1990) Philos Trans Roy Soc Lond A 332(1625):203–220CrossRefGoogle Scholar
  87. 87.
    Jäckel C, Kast P, Hilvert D (2008) Ann Rev Biophys 37:153–173CrossRefGoogle Scholar
  88. 88.
    Reetz MT (2011) Die Evolutionsmaschine als Quelle für selektive Biokatalysatoren. In: Al-Shamery K (ed) Moleküle aus dem All? Wiley-VCH, Weinheim, pp 241–273Google Scholar
  89. 89.
    The “dark matter” should be distinguished from the so-called dark energy which is discussed briefly by M. Eigen in [90]. The expression “dark energy” has been introduced as a result of cosmological considerations,ty. As opposed to this, the existence of “dark matter,” through its gravitational effects in the dynamics of galaxies, is confirmed by many astronomical observations, and is thought of as certain. This was concluded by Fritz Zwicky decades ago and has been confirmed many times since then. These conclusions are just as well-founded as for example the earlier conclusions about the existence of the outer planets in our solar system, by observation of their gravitational effects on the courses of the inner planets which had previously been observed. The existence of the outer planets was then later confirmed through direct observation. The gravitational effect on the observed courses of the galaxies is also confirmed in the case of dark matter. An alternative interpretation would require a modification of the laws of classical mechanics and gravitation and this is thought to be very unlikely. The nature of dark matter is not known however. Speculations range from “difficult to see” normal matter (ionized interstellar hydrogen gas or a multitude of small planets are discussed here) up to new elementary particles, which display few interactions with normal matter, but obey gravitation in a normal fashion (so-called WIMPS). There remain, of course, many fundamental debates about the existence and nature of dark matter.Google Scholar
  90. 90.
    Eigen M (2011) Natürliche Auslese – eine physikalische Gesetzmässigkeit. In: Al-Shamery K (ed) Moleküle aus dem all? Wiley-VCH, Weinheim, pp 225–242Google Scholar
  91. 91.
    Brändas EJ (2012) Arrows of time and fundamental symmetries in chemical physics. Proceedings of ISTCP VII. Int J Quantum Chem. doi:10.1002/qua.24168Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Physical ChemistryETH ZurichZürichSwitzerland

Personalised recommendations