Calculation of Magnetic Properties and Spectroscopic Parameters of Manganese Clusters with Density Functional Theory

  • K. Kanda
  • S. Yamanaka
  • T. Saito
  • Y. Kitagawa
  • T. Kawakami
  • M. Okumura
  • K. Yamaguchi
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)


Recently, the fundamental structures of the oxygen-evolving complex (OEC) in photosystem II were revealed with the X-ray diffraction experiment. Next problems are elucidation of the protonation mode and oxidation states of OEC that are key points for the oxidation reaction in the OEC. Comparison between electron paramagnetic resonance experimental results and ab initio computational results for the hyperfine coupling constants (HFCs) is helpful to determine them. Although the calculated HFC values strongly depend on the approximated exchange–correlation (XC) term of the ab initio density functional theory (DFT) method, there is little investigation on XC dependence of calculated HFC values. Thus, in this study, we have examined the accuracy of contemporary functionals, which are known to be efficient to describe magnetic interactions and molecular interactions, with implementing a benchmark test of HFCs. For this purpose, we constructed a test set consisting of nine dinuclear Mn complexes and Mn(II) ion ligated with six H2O molecules. The computational results are discussed in relation to nature of XC functionals.


Electron Paramagnetic Resonance Density Functional Theory Manganese Complex Hybrid Density Functional Theory Hyperfine Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Grant-in-Aid for Scientific Research C No. 23550016 and B No. 23350064) and by Research and Development of the Next-Generation Integrated Simulation of Living Matter, as a part of the Development and Use of the Next-Generation Supercomputer Project. A part of the calculations were carried out on computer systems in the Institute for Molecular Science Computer Center.


  1. 1.
    Wispé JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA (1992) J Biol Chem 267:23937–23941Google Scholar
  2. 2.
    Srnec M, Aquiilante F, Ryde U, Rulisek L (2009) J Phys Chem B 113:6074–6086CrossRefGoogle Scholar
  3. 3.
    Michaud-Soret I, Jacquamet L, Debaecker-Petit N, Le Pape L, Barynin VV, Latour J-M (1998) Inorg Chem 37:3874–3876CrossRefGoogle Scholar
  4. 4.
    Siegbahn PEM (2001) Theor Chem Acc 105:197–206CrossRefGoogle Scholar
  5. 5.
    Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938CrossRefGoogle Scholar
  6. 6.
    Larson EJ, Riggs PJ, Penner-Han JE, Pecorro VL (1992) J Chem Soc Chem Commun 116:102–103CrossRefGoogle Scholar
  7. 7.
    Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473:55–61CrossRefGoogle Scholar
  8. 8.
    Forbush B, Kok B, Mcgloin MP (1971) Photochem Photobiol 14:307–321CrossRefGoogle Scholar
  9. 9.
    Kulik LV, Epel B, Lubitz W, Messinger J (2005) J Am Chem Soc 127:13421–13435CrossRefGoogle Scholar
  10. 10.
    Peloquin JM, Britt RD (2001) Biochim Biophys Acta 1503:96–111CrossRefGoogle Scholar
  11. 11.
    Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) Mn cluster. J Am Chem Soc 122:10926–10942CrossRefGoogle Scholar
  12. 12.
    Boussac A, Sugiura M, Rutherford AW, Dorlet P (2009) J Am Chem Soc 131:5050–5051CrossRefGoogle Scholar
  13. 13.
    Messinger J, Robblee JH, Yu WO, Sauer K, Yachandra VK, Klein MP (1997) J Am Chem Soc 119:11349–11350CrossRefGoogle Scholar
  14. 14.
    Dexheimer SL, Klein MP (1992) J Am Chem Soc 114:2821–2826CrossRefGoogle Scholar
  15. 15.
    Pantazis D, Orio M, Petrenko T, Zein S, Bill E, Lubitz W, Messinger J, Neese F (2009) Chem-Eur J 15:5108–5123CrossRefGoogle Scholar
  16. 16.
    Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2006) J Inorg Biochem 100:786–800CrossRefGoogle Scholar
  17. 17.
    Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F (2011) J Am Chem Soc 133:19743–19757CrossRefGoogle Scholar
  18. 18.
    Schinzel S, Schraut J, Arbuznikov AV, Siegbahn PEM, Kaupp M (2010) Chem Eur J 16:10424–10438CrossRefGoogle Scholar
  19. 19.
    Noodleman L, Peng C, Case D, Mouesca J (1995) Coord Chem Rev 144:199–244CrossRefGoogle Scholar
  20. 20.
    Sinnecker S, Noodleman L, Neese F, Lubitz W (2004) J Am Chem Soc 126:2613–2622CrossRefGoogle Scholar
  21. 21.
    Orio M, Pantazis DA, Petrenko T, Neese F (2009) Inorg Chem 48:7251–7260CrossRefGoogle Scholar
  22. 22.
    Schnizel S, Kaupp M (2009) Can J Chem 87:1521–1539CrossRefGoogle Scholar
  23. 23.
    Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, OxfordGoogle Scholar
  25. 25.
    Yoshida K (1996) Theory of magnetism. Springer, BerlinGoogle Scholar
  26. 26.
    Sage JT, Xia YM, Debrunner PG, Keough DT, De Jersey J, Zerner B (1989) J Am Chem Soc 111:7239–7247CrossRefGoogle Scholar
  27. 27.
    Cox N, Ames W, Epel B, Kulik LV, Rapatskiy L, Neese F, Messinger J, Wieghardt K, Lubitz W (2011) Inorg Chem 133:8238–8251CrossRefGoogle Scholar
  28. 28.
    Diril H, Chang HR, Nilges MJ, Zhang X, Potenza JA, Schugar HJ, Isied SS, Hendrickson DN (1989) J Am Chem Soc 111:5102–5114CrossRefGoogle Scholar
  29. 29.
    Bossek U, Hummel H, Weyhermuller T, Wieghardt K, Russell S, van der Wolf L, Kolb U (1996) Angew Chem Int Ed 35:1552–1554CrossRefGoogle Scholar
  30. 30.
    Teutloff C, Schafer KO, Sinnecker S, Barynin V, Bittl R, Wieghardt K, Lendzian F, Lubitz W (2005) Magn Reson Chem 43:S51–S64CrossRefGoogle Scholar
  31. 31.
    Wieghardt K, Bossek U, Zsolnai L, Huttner G, Blondin G, Girerd J-J, Babonneau F (1987) J Chem Soc Chem Commun 9:651–653CrossRefGoogle Scholar
  32. 32.
    Schäfer KO, Bittl R, Zweygart W, Lendzian F, Haselhorst G, Weyhermüller T, Wieghardt K, Lubitz W (1998) J Am Chem Soc 120:13104–13120CrossRefGoogle Scholar
  33. 33.
    Hagen KS, Armstrong WH, Hope H (1988) Inorg Chem 27:967–969CrossRefGoogle Scholar
  34. 34.
    Horner O, Charlot M-F, Boussac A, Anxolabéhère-Mallart E, Tchertanov L, Guilhem J, Girerd J-J (1998) Eur J Inorg Chem 1998:721–727CrossRefGoogle Scholar
  35. 35.
    Frapart YM, Boussac A, Albach R, AnxolabehereMallart E, Delroisse M, Verlhac JB, Blondin G, Girerd JJ, Guilhem J, Cesario M, Rutherford AW, Lexa D (1996) J Am Chem Soc 118:2669–2678CrossRefGoogle Scholar
  36. 36.
    Hureau C, Blondin G, Cesario M, Un S (2003) J Am Chem Soc 125:11637–11645CrossRefGoogle Scholar
  37. 37.
    Horner O, Anxolabehere-Mallart E, Charlot MF, Tchertanov L, Guilhem J, Mattioli TA, Boussac A, Girerd JJ (1999) Inorg Chem 38:1222–1232CrossRefGoogle Scholar
  38. 38.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  39. 39.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  40. 40.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  41. 41.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  42. 42.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  43. 43.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  44. 44.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109CrossRefGoogle Scholar
  45. 45.
    Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  46. 46.
    Heyd J, Scuseria G (2004) J Chem Phys 121:1187–1192CrossRefGoogle Scholar
  47. 47.
    Heyd J, Scuseria G, Ernzerhof M (2006) J Chem Phys 124:219906CrossRefGoogle Scholar
  48. 48.
    Henderson T, Izmaylov A, Scalmani G, Scuseria G (2009) J Chem Phys 131:044108CrossRefGoogle Scholar
  49. 49.
    Yamanaka S, Kanda K, Saito T, Kitagawa Y, Kawakami T, Ehara M, Okumura M, Nakamura H, Yamaguchi K (2011) Chem Phys Lett 519–520:134–140Google Scholar
  50. 50.
    Frank N (2002) Inorg Chim Acta 337:181–192CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Rev B.01. Gaussian, Inc., WallingfordGoogle Scholar
  52. 52.
    Itoh K, Kinoshita K (eds) (2000) Molecular magnetism. Gordon and Breach, New YorkGoogle Scholar
  53. 53.
    Luckhurst GR, Pedulli GF (1971) Mol Phys 22:931–935CrossRefGoogle Scholar
  54. 54.
    Vydrov O, Scuseria G, Perdew J (2007) J Chem Phys 126:154109CrossRefGoogle Scholar
  55. 55.
    Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794CrossRefGoogle Scholar
  56. 56.
    Nishihara S, Yamanaka S, Kusakabe K, Nakata K, Yonezawa Y, Nakamura H, Takada T, Yamaguchi K (2009) J Phys Condens Matter 064227:1–5Google Scholar
  57. 57.
    Yamanaka S, Kanda K, Saito T, Kitagawa Y, Kawakami T, Ehara M, Okumura M, Nakamura H, Yamaguchi K (2012) Progress of theoretical chemistry and physics. Springer, Dordrecht (in press)Google Scholar
  58. 58.
    Kanda K, Yamanaka S, Saito T, Ueda K, Ehara M, Okumura M, Nakamura H, Yamaguchi K (in preparation)Google Scholar
  59. 58.
    Schinzel S, Kaupp M (2009) Canadian Journal of Chemistry-Revue Canadienne De Chimie 87(10):1521Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • K. Kanda
    • 1
  • S. Yamanaka
    • 1
  • T. Saito
    • 1
  • Y. Kitagawa
    • 1
  • T. Kawakami
    • 1
  • M. Okumura
    • 1
  • K. Yamaguchi
    • 2
    • 3
  1. 1.Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.Graduate School of ScienceOsaka UniversityToyonakaJapan
  3. 3.TOYOTA Physical & Chemical Research InstituteNagakuteJapan

Personalised recommendations