Quantum Systems in Chemistry and Physics pp 449-460 | Cite as
Calculation of Magnetic Properties and Spectroscopic Parameters of Manganese Clusters with Density Functional Theory
Abstract
Recently, the fundamental structures of the oxygen-evolving complex (OEC) in photosystem II were revealed with the X-ray diffraction experiment. Next problems are elucidation of the protonation mode and oxidation states of OEC that are key points for the oxidation reaction in the OEC. Comparison between electron paramagnetic resonance experimental results and ab initio computational results for the hyperfine coupling constants (HFCs) is helpful to determine them. Although the calculated HFC values strongly depend on the approximated exchange–correlation (XC) term of the ab initio density functional theory (DFT) method, there is little investigation on XC dependence of calculated HFC values. Thus, in this study, we have examined the accuracy of contemporary functionals, which are known to be efficient to describe magnetic interactions and molecular interactions, with implementing a benchmark test of HFCs. For this purpose, we constructed a test set consisting of nine dinuclear Mn complexes and Mn(II) ion ligated with six H2O molecules. The computational results are discussed in relation to nature of XC functionals.
Keywords
Electron Paramagnetic Resonance Density Functional Theory Manganese Complex Hybrid Density Functional Theory Hyperfine TensorNotes
Acknowledgment
We acknowledge financial support by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Grant-in-Aid for Scientific Research C No. 23550016 and B No. 23350064) and by Research and Development of the Next-Generation Integrated Simulation of Living Matter, as a part of the Development and Use of the Next-Generation Supercomputer Project. A part of the calculations were carried out on computer systems in the Institute for Molecular Science Computer Center.
References
- 1.Wispé JR, Warner BB, Clark JC, Dey CR, Neuman J, Glasser SW, Crapo JD, Chang LY, Whitsett JA (1992) J Biol Chem 267:23937–23941Google Scholar
- 2.Srnec M, Aquiilante F, Ryde U, Rulisek L (2009) J Phys Chem B 113:6074–6086CrossRefGoogle Scholar
- 3.Michaud-Soret I, Jacquamet L, Debaecker-Petit N, Le Pape L, Barynin VV, Latour J-M (1998) Inorg Chem 37:3874–3876CrossRefGoogle Scholar
- 4.Siegbahn PEM (2001) Theor Chem Acc 105:197–206CrossRefGoogle Scholar
- 5.Wu AJ, Penner-Hahn JE, Pecoraro VL (2004) Chem Rev 104:903–938CrossRefGoogle Scholar
- 6.Larson EJ, Riggs PJ, Penner-Han JE, Pecorro VL (1992) J Chem Soc Chem Commun 116:102–103CrossRefGoogle Scholar
- 7.Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473:55–61CrossRefGoogle Scholar
- 8.Forbush B, Kok B, Mcgloin MP (1971) Photochem Photobiol 14:307–321CrossRefGoogle Scholar
- 9.Kulik LV, Epel B, Lubitz W, Messinger J (2005) J Am Chem Soc 127:13421–13435CrossRefGoogle Scholar
- 10.Peloquin JM, Britt RD (2001) Biochim Biophys Acta 1503:96–111CrossRefGoogle Scholar
- 11.Peloquin JM, Campbell KA, Randall DW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) Mn cluster. J Am Chem Soc 122:10926–10942CrossRefGoogle Scholar
- 12.Boussac A, Sugiura M, Rutherford AW, Dorlet P (2009) J Am Chem Soc 131:5050–5051CrossRefGoogle Scholar
- 13.Messinger J, Robblee JH, Yu WO, Sauer K, Yachandra VK, Klein MP (1997) J Am Chem Soc 119:11349–11350CrossRefGoogle Scholar
- 14.Dexheimer SL, Klein MP (1992) J Am Chem Soc 114:2821–2826CrossRefGoogle Scholar
- 15.Pantazis D, Orio M, Petrenko T, Zein S, Bill E, Lubitz W, Messinger J, Neese F (2009) Chem-Eur J 15:5108–5123CrossRefGoogle Scholar
- 16.Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2006) J Inorg Biochem 100:786–800CrossRefGoogle Scholar
- 17.Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F (2011) J Am Chem Soc 133:19743–19757CrossRefGoogle Scholar
- 18.Schinzel S, Schraut J, Arbuznikov AV, Siegbahn PEM, Kaupp M (2010) Chem Eur J 16:10424–10438CrossRefGoogle Scholar
- 19.Noodleman L, Peng C, Case D, Mouesca J (1995) Coord Chem Rev 144:199–244CrossRefGoogle Scholar
- 20.Sinnecker S, Noodleman L, Neese F, Lubitz W (2004) J Am Chem Soc 126:2613–2622CrossRefGoogle Scholar
- 21.Orio M, Pantazis DA, Petrenko T, Neese F (2009) Inorg Chem 48:7251–7260CrossRefGoogle Scholar
- 22.Schnizel S, Kaupp M (2009) Can J Chem 87:1521–1539CrossRefGoogle Scholar
- 23.Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
- 24.Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, OxfordGoogle Scholar
- 25.Yoshida K (1996) Theory of magnetism. Springer, BerlinGoogle Scholar
- 26.Sage JT, Xia YM, Debrunner PG, Keough DT, De Jersey J, Zerner B (1989) J Am Chem Soc 111:7239–7247CrossRefGoogle Scholar
- 27.Cox N, Ames W, Epel B, Kulik LV, Rapatskiy L, Neese F, Messinger J, Wieghardt K, Lubitz W (2011) Inorg Chem 133:8238–8251CrossRefGoogle Scholar
- 28.Diril H, Chang HR, Nilges MJ, Zhang X, Potenza JA, Schugar HJ, Isied SS, Hendrickson DN (1989) J Am Chem Soc 111:5102–5114CrossRefGoogle Scholar
- 29.Bossek U, Hummel H, Weyhermuller T, Wieghardt K, Russell S, van der Wolf L, Kolb U (1996) Angew Chem Int Ed 35:1552–1554CrossRefGoogle Scholar
- 30.Teutloff C, Schafer KO, Sinnecker S, Barynin V, Bittl R, Wieghardt K, Lendzian F, Lubitz W (2005) Magn Reson Chem 43:S51–S64CrossRefGoogle Scholar
- 31.Wieghardt K, Bossek U, Zsolnai L, Huttner G, Blondin G, Girerd J-J, Babonneau F (1987) J Chem Soc Chem Commun 9:651–653CrossRefGoogle Scholar
- 32.Schäfer KO, Bittl R, Zweygart W, Lendzian F, Haselhorst G, Weyhermüller T, Wieghardt K, Lubitz W (1998) J Am Chem Soc 120:13104–13120CrossRefGoogle Scholar
- 33.Hagen KS, Armstrong WH, Hope H (1988) Inorg Chem 27:967–969CrossRefGoogle Scholar
- 34.Horner O, Charlot M-F, Boussac A, Anxolabéhère-Mallart E, Tchertanov L, Guilhem J, Girerd J-J (1998) Eur J Inorg Chem 1998:721–727CrossRefGoogle Scholar
- 35.Frapart YM, Boussac A, Albach R, AnxolabehereMallart E, Delroisse M, Verlhac JB, Blondin G, Girerd JJ, Guilhem J, Cesario M, Rutherford AW, Lexa D (1996) J Am Chem Soc 118:2669–2678CrossRefGoogle Scholar
- 36.Hureau C, Blondin G, Cesario M, Un S (2003) J Am Chem Soc 125:11637–11645CrossRefGoogle Scholar
- 37.Horner O, Anxolabehere-Mallart E, Charlot MF, Tchertanov L, Guilhem J, Mattioli TA, Boussac A, Girerd JJ (1999) Inorg Chem 38:1222–1232CrossRefGoogle Scholar
- 38.Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
- 39.Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
- 40.Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
- 41.Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
- 42.Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
- 43.Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544CrossRefGoogle Scholar
- 44.Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109CrossRefGoogle Scholar
- 45.Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
- 46.Heyd J, Scuseria G (2004) J Chem Phys 121:1187–1192CrossRefGoogle Scholar
- 47.Heyd J, Scuseria G, Ernzerhof M (2006) J Chem Phys 124:219906CrossRefGoogle Scholar
- 48.Henderson T, Izmaylov A, Scalmani G, Scuseria G (2009) J Chem Phys 131:044108CrossRefGoogle Scholar
- 49.Yamanaka S, Kanda K, Saito T, Kitagawa Y, Kawakami T, Ehara M, Okumura M, Nakamura H, Yamaguchi K (2011) Chem Phys Lett 519–520:134–140Google Scholar
- 50.Frank N (2002) Inorg Chim Acta 337:181–192CrossRefGoogle Scholar
- 51.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Rev B.01. Gaussian, Inc., WallingfordGoogle Scholar
- 52.Itoh K, Kinoshita K (eds) (2000) Molecular magnetism. Gordon and Breach, New YorkGoogle Scholar
- 53.Luckhurst GR, Pedulli GF (1971) Mol Phys 22:931–935CrossRefGoogle Scholar
- 54.Vydrov O, Scuseria G, Perdew J (2007) J Chem Phys 126:154109CrossRefGoogle Scholar
- 55.Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794CrossRefGoogle Scholar
- 56.Nishihara S, Yamanaka S, Kusakabe K, Nakata K, Yonezawa Y, Nakamura H, Takada T, Yamaguchi K (2009) J Phys Condens Matter 064227:1–5Google Scholar
- 57.Yamanaka S, Kanda K, Saito T, Kitagawa Y, Kawakami T, Ehara M, Okumura M, Nakamura H, Yamaguchi K (2012) Progress of theoretical chemistry and physics. Springer, Dordrecht (in press)Google Scholar
- 58.Kanda K, Yamanaka S, Saito T, Ueda K, Ehara M, Okumura M, Nakamura H, Yamaguchi K (in preparation)Google Scholar
- 58.Schinzel S, Kaupp M (2009) Canadian Journal of Chemistry-Revue Canadienne De Chimie 87(10):1521Google Scholar