Luminescence Wavelengths and Energy Level Structure of Dinuclear Copper Complexes and Related Metal Complexes

  • T. Ishii
  • M. Kenmotsu
  • K. Tsuge
  • G. Sakane
  • Y. Sasaki
  • M. Yamashita
  • B. K. Breedlove
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)


Electronic structures and the energy level diagrams of dinuclear copper halide complexes exhibiting luminescence ranging from blue to red have been calculated by means of a discrete variational (DV)-Xα molecular orbital method. We confirmed that the wavelength of the experimental luminescence could be reproduced by comparing the electronic states of the ground state in relation to the luminescence caused by electron transfer between the excited and the ground states. The observed luminescence wavelength is related to the excitation energy from the occupied copper 3d to the unoccupied ligand molecular orbitals. This relationship can also be reproduced in the cases of other related metal complexes.


Molecular Orbital Calculation Fermi Energy Level Ultraviolet Lamp Dinuclear Copper Ligand Charge Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their thanks to Drs. F. Izumi and K. Momma (National Institute for Materials Science, Japan) for permission to use the 3D visualization program VESTA. They also express their gratitude to Prof. H. Adachi (Kyoto University) for permission to use his computational program. The authors thank Drs. R. Sekine (Shizuoka University), Y. Kowada (Hyogo University of Teachers Education), and M. Mizuno (Osaka University) for fruitful discussions and useful technical advice. They also thank Profs. K. Toriumi and Y. Ozawa (University of Hyogo) for fruitful discussions on the molecular structure in the excited state.


  1. 1.
    Cotton FA, Wilkinson G, Gaus PL (1994) Basic inorganic chemistry, 3rd edn. Wiley, New York. ISBN 978-0471505327Google Scholar
  2. 2.
    Cotton FA, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley-Interscience, New York. ISBN 978-0471199571Google Scholar
  3. 3.
    Figgis BN, Hitchman MA (1999) Ligand field theory and its applications. Wiley-VCH, New York. ISBN 978-0471317760Google Scholar
  4. 4.
    Ishii T, Tsuboi S, Sakane G, Yamashita M, Breedlove BK (2009) Dalton Trans 4:680–687CrossRefGoogle Scholar
  5. 5.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2005) Inorg Chem 44:9667–9675CrossRefGoogle Scholar
  6. 6.
    Ozawa Y, Terashima M, Mitsumi M, Toriumi K, Yasuda N, Uekusa H, Ohashi Y (2003) Chem Lett 32(1):62–63CrossRefGoogle Scholar
  7. 7.
    Rosén A, Ellis DE (1975) J Chem Phys 62(8):3039–3050CrossRefGoogle Scholar
  8. 8.
    (a) Adachi H, Tsukada M, Satoko C (1978) J Phys Soc Jpn 45(3):875–883; (b) Satoko C, Tsukada M, Adachi H (1978) J Phys Soc Jpn 45(4):1333–1340; (c) Adachi H, Shiokawa S, Tsukada M, Satoko C, Sugano S (1978) J Phys Soc Jpn 47(5):1528–1537; (d) Adachi H, Taniguchi K (1978) J Phys Soc Jpn 49(5):1944–1953Google Scholar
  9. 9.
    Adachi H, Mukoyama T, Kawai J (2005) Hartree–Fock–Slater method for materials science, the DV-Xα method for design and characterization of materials, vol 84, Springer series in materials science. Springer, Berlin/Heidelberg/New York. ISBN 978-3540245087Google Scholar
  10. 10.
    Allen FH (2002) Acta Crystallogr B: Struct Sci 58:380–388CrossRefGoogle Scholar
  11. 11.
    Tsuboyama A, Kuge K, Furugori M, Okada S, Hoshino M, Ueno K (2007) Inorg Chem 46:1992–2001CrossRefGoogle Scholar
  12. 12.
    Zhao SB, Wang RY, Wang S (2006) Inorg Chem 45:5830–5840CrossRefGoogle Scholar
  13. 13.
    Gennari M, Lanfranchi M, Marchiò L (2009) Inorg Chim Acta 362:4430–4438CrossRefGoogle Scholar
  14. 14.
    Araki H, Tsuge K, Sasaki Y, Ishizaka S, Kitamura N (2007) Inorg Chem 46:10032–10034CrossRefGoogle Scholar
  15. 15.
    Mukherjee S, Basu C, Chowdhury S, Chattopadhyay AP, Ghorai A, Ghosh U, Stoeckli-Evans H (2010) Inorg Chim Acta 363:2752–2761CrossRefGoogle Scholar
  16. 16.
    Miller AJM, Dempsey JL, Peters JC (2007) Inorg Chem 46(18):7244–7246CrossRefGoogle Scholar
  17. 17.
    Smith CS, Branham CW, Marquardt BJ, Mann KR (2010) J Am Chem Soc 132:14079–14085CrossRefGoogle Scholar
  18. 18.
    Germain ME, Vargo TR, Khalifah PG, Knapp MJ (2007) Inorg Chem 46:4422–4429CrossRefGoogle Scholar
  19. 19.
    Wakamiya A, Mori K, Yamaguchi S (2007) Angew Chem Int Ed 46:4273–4276; Elbing M, Bazan GC (2008) Angew Chem 120:846–850Google Scholar
  20. 20.
    (a) Mulliken RS (1955) J Chem Phys 23:1833–1841; (b) Mulliken RS (1955) J Chem Phys 23:1841–1846; (c) Mulliken RS (1955) J Chem Phys 23:2338–2343; (d) Mulliken RS (1955) J Chem Phys 23:2343–2347.Google Scholar
  21. 21.
    Miyasaka H, Takayama K, Saitoh A, Furukawa S, Yamashita M, Clérac R (2010) Chem Eur J 16(12):3656–3662CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • T. Ishii
    • 1
  • M. Kenmotsu
    • 1
  • K. Tsuge
    • 2
  • G. Sakane
    • 3
  • Y. Sasaki
    • 4
  • M. Yamashita
    • 5
  • B. K. Breedlove
    • 5
  1. 1.Department of Advanced Materials Science, Faculty of EngineeringKagawa UniversityTakamatsuJapan
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of ToyamaToyamaJapan
  3. 3.Department of Chemistry, Faculty of ScienceOkayama University of ScienceOkayamaJapan
  4. 4.Division of Chemistry, Graduate School of ScienceHokkaido UniversitySapporoJapan
  5. 5.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations