The Dirac Electron: Spin, Zitterbewegung, the Compton Wavelength, and the Kinetic Foundation of Rest Mass

Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 26)

Abstract

The Dirac equation, which was derived by combining, in a consistent manner, the relativistic invariance condition with the quantum superposition principle, has shown its fecundity by explaining the electron spin, predicting antimatter, and enabling Schrödinger’s trembling motion (Zitterbewegung). It has also yielded as expectation value for the electron speed the velocity of light. But the question has hardly been raised as to the effect of this intrinsic motion on the electron mass. In this chapter, we conjecture that the internal structure of the electron should consist of a massless charge describing, at light velocity, a vibrating motion in a domain defined by the Compton wavelength, the measured rest mass being generated by this very internal motion.

Keywords

Dirac Equation Rest Mass Internal Motion Light Velocity Spin Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pullman B (1995) L’Atome dans l’Histoire de la Pensée Humaine. Fayard Ed., ParisGoogle Scholar
  2. 2.
    Noel Cottingham W, Greenwood DA (1998) Introduction to the Standard Model of Particle Physics. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  3. 3.
    Feymann RP (1998) Quantum Electrodynamics. Addison-Wesley, ReadingGoogle Scholar
  4. 4.
    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1989) Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, New YorkGoogle Scholar
  5. 5.
    Dirac PAM (1958) The Principles of Quantum Mechanics, 1st edn 1930, 4th edn 1958. Clarendon Press, Oxford, Chaps. 11–12Google Scholar
  6. 6.
    de Broglie L (1934) L’Electron Magnétique: Théorie de Dirac. Hermann, Paris, Chaps. 9–22Google Scholar
  7. 7.
    Maruani J (1980) Magnetic resonance and related techniques. In: Becker P (ed) NATO ASI proceedings. Plenum, New YorkGoogle Scholar
  8. 8.
    Schrödinger E (1930/1931) Sitzungsber Preuss Akad Wiss Berlin, Phys-Math Kl 24:418–428; 25:63–72Google Scholar
  9. 9.
    Klein O (1929) Z Phys 53:157 ffCrossRefGoogle Scholar
  10. 10.
    Szymanowski C, Keitel CH, Maquet A (1999) Laser Phys 9:133–137Google Scholar
  11. 11.
    Barut AO, Bracken AJ (1981) Phys Rev D 24:3333 ff; Barut AO, Zangui N (1984) Phys Rev Lett 52:2009–2012Google Scholar
  12. 12.
    Haisch B, Rueda A, Puthoff HE (1994) Phys Rev A 49:678–694CrossRefGoogle Scholar
  13. 13.
    Infeld L, Schild AE (1945/1946) Phys Rev 68:250–272; 70:410–425Google Scholar
  14. 14.
    Chapman TC, Leiter DJ (1976) Am J Phys 44(1976):858–862; Parker L, Pimentel LO (1982) Phys Rev D 25(1982):3180–3190Google Scholar
  15. 15.
    Sachs M (1986) Quantum Mechanics from General Relativity: an Approximation for a Theory of Inertia. Reidel, DordrechtCrossRefGoogle Scholar
  16. 16.
    Brändas E (2009) The equivalence principle from a quantum-mechanical perspective. In: Piecuch P et al (eds) Advances in the theory of atomic and molecular systems, PTCP 19. Springer, London, pp 73–92CrossRefGoogle Scholar
  17. 17.
    Kursunoglu BN, Mintz SL, Perlmutter A (eds) (1998) Physics of Mass. Kluwer/Plenum, Dordrecht/New YorkGoogle Scholar
  18. 18.
    Eddington AS (1920) Space, Time, and Gravitation. Cambridge University Press, Cambridge, Part B, Section IV-40Google Scholar
  19. 19.
    Misner CW, Thorne KS, Wheeler JA (1995) Gravitation. Freeman & Co., New YorkGoogle Scholar
  20. 20.
    Halbwachs F (1960) Recherches sur la Dynamique du Corpuscule Tournant Relativiste et sur l’Hydrodynamique Relativiste des Fluides Dotés d’un Spin. Thesis, Gauthier-Villars, ParisGoogle Scholar
  21. 21.
    Ashworth DG, Davies PA (1979) Transformations between rotating and inertial frames of reference. J Phys A Math Gen 12:1425–1440CrossRefGoogle Scholar
  22. 22.
    Rizzi G, Ruggiero ML (2004) Relativity in Rotating Frames. Kluwer, DordrechtGoogle Scholar
  23. 23.
    de Broglie L (1961) Introduction à la Nouvelle Théorie des Particules. Gauthier-Villars, Paris, Chap. 3. See also (1954) Théorie Générale des Particules à Spin: Méthode de Fusion. Gauthier-Villars, ParisGoogle Scholar
  24. 24.
    Fujiwara S (1921) In: Lometa. Fujiwara effect. Everything.comGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique – Matière et RayonnementCNRS & UPMCParisFrance

Personalised recommendations