Solid State Structures of Cadmium Complexes with Relevance for Biological Systems

  • Rosa Carballo
  • Alfonso Castiñeiras
  • Alicia Domínguez-Martín
  • Isabel García-Santos
  • Juan Niclós-Gutiérrez
Chapter
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)

Abstract

This chapter provides a review of the literature on structural information from crystal structures determined by X-ray diffractometry of cadmium(II) complexes containing ligands of potential biological interest. These ligands fall into three broad classes, (i) those containing N-donors such as purine or pyrimidine bases and derivatives of adenine, guanine or cytosine, (ii) those containing carboxylate groups such as α-amino acids, in particular the twenty essential ones, the water soluble vitamins (B-complex) or the polycarboxylates of EDTA type ligands, and (iii) S-donors such as thiols/thiolates or dithiocarbamates. A crystal and molecular structural analysis has been carried out for some representative complexes of these ligands, specifically addressing the coordination mode of ligands, the coordination environment of cadmium and, in some significant cases, the intermolecular interactions.

Keywords

amino acids cadmium complexes crystal structures nucleobases thiolates vitamins 

Abbreviations and Definitions

acv

acyclovir[2-amine-9-(2-hydroxyethoxymethyl)-3H-purin-6-one

ap

adipate(2–)

ATP

adenosine 5’-triphosphate

BAL

British Anti-Lewisite (2,3-dimercaptopropanol)

2,2’-bipy

2,2’-bipyridine

4,4’-bipy

4,4’-bipyridine

bpvbd

3,6-bis(pivaloylamino)benzene-1,2-dithiolato-S,S’(2–)

CSD

Cambridge Structural Database

DABT

2,2’-diamino-4,4’-bis-1,3-thiazole

DMAB

4-(dimethylamino)benzoate(1–)

DMF

N,N-dimethylformamide

DMPS

2,3-dimercapto-1-propanesulfonate (1–)

DMSA

dimercaptosuccinate(2–)

dmso

dimethylsulfoxide

dpe

1,2-di(pyridin-4-yl)ethane

dppf

(diphenylphosphino)ferrocene

ede-ade

2-(ethylenediamine)ethyl-N9-adenine

ede-dap

2-(ethylenediamine)ethyl-N9-2,6-diaminopurine

ede-gua

2-(ethylenediamine)ethyl-N9-guanine

edp-dap

2-(ethylenediamine)propyl-N9-2,6-diaminopurine

edt

ethane-1,2-dithiolato

EDTA

ethylenediamine-N,N,N’,N’-tetraacetate(4–)

en

1,2-ethylenediamine

9Etgua

9-ethylguanine

H6MP

6-mercaptopurine

Hade

adenine

Hala

alanine

Hasn

asparagine

Hasp

aspartate

HBthiamine

2-(α-hydroxybenzyl)thiamine

Hcyt

cytosine

Hdap

2,6-diaminopurine

Hgly

glycine

Hgua

guanine

Hhip

hippuric acid

Hhyp

hypoxanthine

Hhis

histidine

Hicyt

isocytosine

HIm

1H-imidazole

Hmet

methionine

Hphe

phenylalanine

Hpro

proline

Hptola

p-toluic acid

Hpur

purine

Hpym

pyrimidine

Htheo

theophiline

Htrp

tryptophan

Hura

uracil

Hxan

xanthine

H2ap

adipic acid

H2asp

aspartic acid glycine

H2BAD+

N6-benzyladeninium cation

H2cys

cysteine

H2FAD+

N6-furfuryladeninium cation

H2glu

glutamic acid

H2tp

terephthalic acid

IDA

iminodiacetate(2–)

9Meade

9-methyladenine

1Mecyt

1-methylcytosine

9Megua

9-methylguanine

NA

nicotinate(1–)

NADA

nicotinamide

NBO

natural bond orbital programme

NBZ

2-nitrobenzoate(1–)

niacin

3-pyridinecarboxylic acid

niacinamide

3-pyridinecarboxamide

NTA

nitrilotriacetate(3–)

ox

oxalate(2–)

o-PhDTA

ortho-phenylenediamine-N,N,N’,N’-tetraacetate(4–)

paa

2-pyridinealdazine

phen

1,10-phenanthroline

PMAB

4-(methylamino)benzoate(1–)

\( \text{PPh}_4^ + \)

tetraphenylphosphonium

ptola

p-toluic acid

S-2,4,6-iPr3C6H2

(2,4,6-tri-isopropyl)benzenethiolato(1–)

S-2,4,6,tbutyl C6H2

(2,4,6-tri-tert-butyl)benzenothiolato(1–)

SC6H4But-4

4-tert-butylbenzenothiolato(1–)

ScHex

cyclohexanethiolato(1–)

SCN

thiocyanate

SPh = SC6H5

benzenothiolato(1–)

SPhF-3

3-fluorobenzenethiolato(1–)

tem-N9,N9’-diade

N9,N9-tetramethylene-bis(adenine)

3,4-TDTA

3,4-toluenediamine-N,N,N’,N’-tetraacetate(4–)

tm-N9,N9’-diade

N9,N9′-trimethylene-bis(adenine)

1Toscyt

1-(p-toluenesulfonyl)cytosine

tp

terephthalate(2–)

tren

tris-(2-aminoethyl)amine

trp

tryptophan

References

  1. 1.
    1. H. R. Pohl, H. G. Abadin, J. F. Risher, in Neurotoxicity of Cadmium, Lead, and Mercury, Vol. 1 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel, John Wiley & Sons, Chichester, UK, 2006, pp. 397-400.Google Scholar
  2. 2.
    J. S. Casas, V. Moreno, A. Sánchez, J. L. Sánchez, J. Sordo, Química Bioinorgánica, Síntesis, Madrid, 2002, pp. 276–285.Google Scholar
  3. 3.
    R. R. Crichton, Biological Inorganic Chemistry. An Introduction, Elsevier, Oxford, 2007, pp. 346–350.Google Scholar
  4. 4.
    ChemDraw Ultra, Cambridge Soft, ver. 12.0.2.1076, 2010.Google Scholar
  5. 5.
    K. Brandenburg, H. Putz, DIAMOND 3.x, Crystal Impact GbR, Bonn, Germany, 2004.Google Scholar
  6. 6.
    C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodríguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, Mercury 2.0 CSD, J. Appl. Cryst., 2008, 41, 466–470.Google Scholar
  7. 7.
    S. Péres-Yáñez, O. Castillo, J. Cepeda, J. P. García-Terán, A. Luque, P. Román, Inorg. Chim. Acta, 2011, 365, 211–219.Google Scholar
  8. 8.
    A. K. Paul, U. Sanyal, S. Natarajan, Cryst. Growth Des., 2010, 10, 4161–4175.CrossRefGoogle Scholar
  9. 9.
    C. H. Wei, K. B. Jacobson, Inorg.Chem., 1981, 20, 356–363.CrossRefGoogle Scholar
  10. 10.
    M. A. Salam, H. Q. Yuan, T. Kikuchi, N. A. Prasad, I. Fujisawa, K. Aoki, Inorg. Chim. Acta, 2009, 362, 1158–1168.Google Scholar
  11. 11.
    E.-C. Yang, H.-K. Zhao, B. Ding, X.-G. Wang, X.-J. Zhao, New J. Chem., 2007, 31, 1887–1890.Google Scholar
  12. 12.
    E.-C. Yang, Y.-N. Chan, H. Liu, Z.-Ch. Wang, X.-J. Zhao, Cryst. Growth Des., 2009, 9, 4933–4944.CrossRefGoogle Scholar
  13. 13.
    E. A. H. Griffith, N. G. Charles, E. L. Amma, Acta Crystallogr., Sect. B, 1982, 38, 942–944.Google Scholar
  14. 14.
    P. A. Ochoa, M. I. Rodríguez-Tapiador, S. S. Alexandre, C. Pastor, F. Zamora, J. Inorg. Biochem., 2005, 99, 1540–1547.Google Scholar
  15. 15.
    N. Stanley, P. T. Muthiah, P. Luger, M. Weber, S. J. Geib, Inorg. Chem. Commun., 2005, 8, 1056–1059.CrossRefGoogle Scholar
  16. 16.
    M. P. Brandi-Blanco, D. Choquesillo-Lazarte, A. Domíngez-Martín, J. M. González-Pérez, A. Castiñeiras, J. Niclós-Gutiérrez, J. Inorg. Biochem. 2011, 105, 616–623.Google Scholar
  17. 17.
    A. García-Raso, J. J. Fiol, F. Bádenas, R. Cons, A. Terrón, M. Quirós, J. Chem. Soc., Dalton Trans., 1999, 167–174.Google Scholar
  18. 18.
    M. A. Shipman, C. Price, A. E. Gibson, M. R. J. Elsegood, W. Clegg, A. Houlton, Chem. Eur. J., 2000, 6, 4371–4378.PubMedCrossRefGoogle Scholar
  19. 19.
    D. Amantia, M. A. Shipman, C. Price, M. R. J. Elsegood, W. Clegg, A. Houlton, Inorg. Chim. Acta, 2006, 359, 3515–3520.Google Scholar
  20. 20.
    M. A. Galindo, D. Amantia, A. Martínez, W. Clegg, R. W. Harrington, V. Moreno, A. Houlton, Inorg. Chem., 2009, 48, 10295–10303.PubMedCrossRefGoogle Scholar
  21. 21.
    A. García-Raso, J. J. Fiol, F. Bádenas, X. Solans, M. Font-Bardía, Polyhedron, 1999, 18, 765–772.CrossRefGoogle Scholar
  22. 22.
    A. García-Raso, J. J. Fiol, A. Tasada, F. M. Alberti, F. Bádenas, X. Solans, M. Font-Bardía, Polyhedron, 2007, 26, 949–957.CrossRefGoogle Scholar
  23. 23.
    E. Dubler, E. Gyr, Inorg. Chem., 1988, 27, 1466–1473.CrossRefGoogle Scholar
  24. 24.
    E. A. H. Griffith, E. L. Amma, Chem. Commun., 1979, 1013–1014.Google Scholar
  25. 25.
    P. Amo-Ochoa, M. I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S. S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorg. Chem., 2006, 45, 7642–7650.PubMedCrossRefGoogle Scholar
  26. 26.
    E. Gyr, H.W. Schmalle, E. Dubler, 2008 (Private Communication), RAKSUS in CSD database.Google Scholar
  27. 27.
    E. Dubler, G. Hänggi, H. Schmalle, Inorg. Chem., 1990, 29, 2518–2523.CrossRefGoogle Scholar
  28. 28.
    D. K. Patel, A. Domínguez-Martín, M. P. Brandi-Blanco, V. M. Nurchi, J. Niclós-Gutiérrez, Coord. Chem. Rev., 2012, 256, 193–211.CrossRefGoogle Scholar
  29. 29.
    H. Q. Yuan, K. Aoki, I. Fujisawa, Inorg. Chim. Acta, 2009, 362, 975–984.Google Scholar
  30. 30.
    E. Buncel, R. Kumar, A. R. Norris, A. L. Beauchamp, Can. J. Chem., 1985, 63, 2575–2581.CrossRefGoogle Scholar
  31. 31.
    G. D. Munno, S. Mauro, T. Pizzino, D. Viterbo, J. Chem. Soc., Dalton Trans., 1993, 1113–1119.Google Scholar
  32. 32.
    L. Bancu, P. Bourosh, I. Jitaru, Yu. A. Siminov, J. Lipkowski, Rev. Roum. Chim., 2006, 51, 397–401.Google Scholar
  33. 33.
    P. T. Muthiah, J. J. Robert, S. B. Raj, G. Bocelli, R. Olla, Acta Crystallogr., Sect.E, 2001, 57, m558–m560.Google Scholar
  34. 34.
    M. C. Capllonch, A. García-Raso, A. Terrón, M. C. Apella, E. Espinosa, E. Molins, J. Inorg. Biochem., 2001, 85, 173–178.Google Scholar
  35. 35.
    K. Kaabi, M. El Glaoui, P. S. Pereira Silva, M. Ramos Silva, C. Ben Nasr, Acta Crystallogr., Sect.E, 2010, 66, m1225.Google Scholar
  36. 36.
    I. Mutikainen, P. Lumme, Acta Crystallogr., Sect.B, 1980, 36, 2237–2240.Google Scholar
  37. 37.
    C. Gagnon, A. L. Beauchamp, D. Tranqui, Can. J. Chem., 1979, 57, 1372–1376.CrossRefGoogle Scholar
  38. 38.
    A. Visnjevac, N. Biliskov, B. Zinic, Polyhedron, 2009, 28, 3101–3109.CrossRefGoogle Scholar
  39. 39.
    H. Fuess, H. Bartunik, Acta Crystallogr., Sect. B, 1976, 32, 2803–2806.Google Scholar
  40. 40.
    P. J. Barrie, A. Gyani, M. Motevalli, P. O’Brien, Inorg. Chem., 1993, 32, 3862–3867.CrossRefGoogle Scholar
  41. 41.
    R. J. Flook, H. C. Freeman, C. J. Moore, M. L. Scudder, Chem. Commun., 1973, 753–754.Google Scholar
  42. 42.
    J. Wang, X. Xu, W. Ma, F. Yin, T. Guo, L. Lu, X. Yang, X. Wang, J. Inorg. Organomet. Polym. Mater., 2009, 19, 401–405.CrossRefGoogle Scholar
  43. 43.
    J.-N. Rebilly, P. W. Gardner, G. R. Darling, J. Bacsa, M. J. Rosseinsky, Inorg. Chem., 2008, 47, 9390–9399.PubMedCrossRefGoogle Scholar
  44. 44.
    A. Demaret, F. Abraham, Acta Crystallogr., Sect. C, 1987, 43, 2067–2069.CrossRefGoogle Scholar
  45. 45.
    D. W. Tomlin, T. M. Cooper, S. M. Cline, J. M. Hughes, W. W. Adams, Acta Crystallogr., Sect. C, 1997, 53, 1815–1816.CrossRefGoogle Scholar
  46. 46.
    R. Thulasidhass, J. K. Mohanarao, Curr. Sci., 1980, 49, 349.Google Scholar
  47. 47.
    M. Dan, C. N. R. Rao, Chem. Eur. J., 2005, 11, 7102–7109.PubMedCrossRefGoogle Scholar
  48. 48.
    K. I. Schaffers, D. A. Keszler, Acta Crystallogr., Sect. C, 1993, 49, 1156–1158.Google Scholar
  49. 49.
    M. S. Nandhini, R. V. Krishnakumar, S. Natarajan, Acta Crystallogr., Sect. E, 2003, 59, m756–m758.Google Scholar
  50. 50.
    A. Kandasamy, R. Siddeswaran, P. Murugakoothan, P. S. Kumar, R. Mohan, Cryst. Growth Des., 2007, 7, 183–186.CrossRefGoogle Scholar
  51. 51.
    B.-X. Liu, J.-Y. Yu, D.-J. Xu, Acta Crystallogr., Sect. E, 2005, 61, m2291–m2293.Google Scholar
  52. 52.
    L. Gasque, S. Bernès, R. Ferrari, G. Mendoza-Díaz, Polyhedron, 2002, 21, 935–941.CrossRefGoogle Scholar
  53. 53.
    M. J. Ingleson, J. Bacsa, M. J. Rosseinsky, Chem.Commun., 2007, 3036–3038.Google Scholar
  54. 54.
    D. Deng, P. Liu, B. Ji, L. Wang, W. Fu, Tetrahedron Lett., 2010, 51, 5567–5570.CrossRefGoogle Scholar
  55. 55.
    M. F. Richardson, K. Franklin, D. M. Thompson, J. Am. Chem. Soc., 1975, 97, 3204–3209.PubMedCrossRefGoogle Scholar
  56. 56.
    R. E. Cramer, R. B. Maynard, J. A. Iber, J. Am. Chem. Soc., 1981, 103, 76–81.CrossRefGoogle Scholar
  57. 57.
    K. Aoki, H. Yamazaki, A. Adeyemo, Inorg. Chim. Acta, 1991, 180, 117–124.Google Scholar
  58. 58.
    J. S. Casas, E. E. Castellano, M. D. Couce, A. Sánchez, J. Sordo, J. M. Varela, J. Zukerman-Schpector, Inorg. Chem., 1995, 34, 2430–2437.CrossRefGoogle Scholar
  59. 59.
    J. S. Casas, A. Castiñeiras, M. D. Couce, A. Sánchez, J. Sordo, J. M. Varela, Polyhedron, 1995, 14, 1825–1829.CrossRefGoogle Scholar
  60. 60.
    N.-H. Hu, T. Norifusa, K. Aoki, Polyhedron, 1999, 18, 2987–2994.CrossRefGoogle Scholar
  61. 61.
    J. S. Casas, E. E. Castellano, M. D. Couce, J. Ellena, A. Sánchez, J. Sordo, C. Taboada, J. Inorg. Biochem., 2006, 100, 124–132.Google Scholar
  62. 62.
    Y. Zhou, W. Bi, X. Li, J. Chen, R. Cao, M. Hong, Acta Crystallogr., Sect. E, 2003, 59, m356–m358.Google Scholar
  63. 63.
    J. Moncol, D. Miklos, P. Segla, M. Koman, Acta Crystallogr., Sect. E, 2008, 64, m665–m666.Google Scholar
  64. 64.
    J. Y. Lu, M. A. Achten, A. Zhang, Inorg. Chem. Commun., 2007, 10, 114–116.CrossRefGoogle Scholar
  65. 65.
    J. Y. Lu, E. E. Kohler, Inorg. Chem. Commun., 2002, 5, 196–198.CrossRefGoogle Scholar
  66. 66.
    J. Zhang, Z.-J. Li, Y.-H. Wen, Y. Kang, Y.-Y. Qin, Y.-G. Yao, Acta Crystallogr., Sect. C, 2004, 60, m389–m391.Google Scholar
  67. 67.
    Y. X. Chi, Sh. Y. Niu, J. Jin, L. P. Sun, G. D. Yang, L. Ye, Z. Anorg. Allg. Chem., 2007, 633, 1274–1278.CrossRefGoogle Scholar
  68. 68.
    C. Zhang, D. Xu, Y. Xu, X. Huang, Acta Crystallogr., Sect.C, 1996, 52, 591–593.Google Scholar
  69. 69.
    L. Yang, L. Liu, S. Li, Z. Kristallogr.-New Cryst. Struct., 2009, 224, 423–424.Google Scholar
  70. 70.
    G. Yang, H.-G. Zhu, B.-H. Liang, X.-M. Chen, J. Chem. Soc., Dalton Trans., 2001, 580–585.Google Scholar
  71. 71.
    Z. Lian, N. Zhao, F. Yang, P. Liu, Z. Kristallogr.-New Cryst. Struct., 2011, 226, 289–290.Google Scholar
  72. 72.
    K.-L. Zhang, B. Yang, J.-G. Lin, S. W. Ng, Acta Crystallogr., Sect. E, 2009, 65, m292.Google Scholar
  73. 73.
    Z.-P. Deng, S. Gao, S. W. Ng, Acta Crystallogr., Sect. E, 2007, 63, m2323.Google Scholar
  74. 74.
    Ch. Li, M. Chen, Ch. Shao, Acta Crystallogr., Sect. E, 2008, 64, m424.Google Scholar
  75. 75.
    T. Hokelek, E. G. Saglam, B. Tercan, O. Aybirdi, H. Necefoglu, Acta Crystallogr., Sect.E, 2010, 66, m1559–m1560.Google Scholar
  76. 76.
    T. Hokelek, Y. Suzen, B. Tercan, O. Aybirdi, H. Necefoglu, Acta Crystallogr., Sect.E, 2010, 66, m782–m783.Google Scholar
  77. 77.
    A. Mosset, F. Nepveu-Juras, R. Harpin, J.-J. Bonnet, J. Inorg. Nucl. Chem., 1978, 40, 1259–1263.CrossRefGoogle Scholar
  78. 78.
    N. G. Furmanova, Zh. I. Berdalieva, T. S. Chernaya, V. F. Resnyanskii, N. K. Shiitieva, K. S. Sulaimankulov, Crystallogr. Rep. 2009, 54, 228–235.CrossRefGoogle Scholar
  79. 79.
    A. Martelli, E. Rousselet, C. Dycke, A. Bouron, J.-M. Moulis, Biochemie, 2006, 88, 1807–1814.CrossRefGoogle Scholar
  80. 80.
    I. G. Dance, Polyhedron, 1986, 5, 1037–1104.CrossRefGoogle Scholar
  81. 81.
    E. S. Gruff, S. A. Koch, J. Am. Chem. Soc., 1990, 112, 1245–1247.CrossRefGoogle Scholar
  82. 82.
    R. A. Santos, E. S. Gruff, S. A. Koch, G. S. Harbison, J. Am. Chem. Soc., 1991, 113, 469–475.CrossRefGoogle Scholar
  83. 83.
    M. Bochmann, K. Webb, M. Harman, M. B. Hursthouse, Angew. Chem., Int. Ed., 1990, 29, 638–639.Google Scholar
  84. 84.
    D. Coucouvanis, D. Swenson, N.C. Baenziger, C. Murphy, D. G. Holah, N. Sfarnas, A. Simopoulos, A. Kostikas. J. Am. Chem. Soc., 1981, 103, 3350–3362.CrossRefGoogle Scholar
  85. 85.
    A. Silver, S. A. Koch, M. Millar, Inorg. Chim. Acta, 1993, 205, 9–14.Google Scholar
  86. 86.
    N. Ueyama, T. Sugawara, K. Sasaki, A. Nakamura, S. Yamashita, Y. Wakatsuki, H. Yamazaki, N. Yasuoka, Inorg. Chem., 1988, 27, 741–747.CrossRefGoogle Scholar
  87. 87.
    I. L. Abrahams, C. D. Garner, W. Clegg, J. Chem. Soc., Dalton Trans., 1987, 1577–1579.Google Scholar
  88. 88.
    B. Ali, I. Dance, M. Scudder, D. Craig, Cryst. Growth Des., 2002, 2, 601–607.CrossRefGoogle Scholar
  89. 89.
    K. Tang, A. Li, X. Jin, Y. Tang, Chem. Commun., 1991, 1590–1591.Google Scholar
  90. 90.
    K. Tang, X. Jin, A. Li, S. Li, Z. Li, Y. Tang, J. Coord. Chem., 1994, 31, 305–320.Google Scholar
  91. 91.
    K. S. Hagen, D. W. Stephan, R. H. Holm, Inorg. Chem., 1982, 21, 3928–3936.CrossRefGoogle Scholar
  92. 92.
    D. Craig, I. G. Dance, R. Garbutt, Angew. Chem., Int. Ed., 1986, 25, 165–166.Google Scholar
  93. 93.
    K. S. Hagen, R. H. Holm. Inorg. Chem., 1983, 22, 3171–3176.CrossRefGoogle Scholar
  94. 94.
    Y. Matsunaga, K. Fujisawa, N. Ibi, M. Fujita, T. Ohashi, N. Amir, Y. Miyashita, K. Aika, Y. Izumi, K. Okamoto. J. Inorg. Biochem., 2006, 100, 239–249.CrossRefGoogle Scholar
  95. 95.
    K. Tang, T. Xia, X. Jin, Y. Tang, Polyhedron, 1994, 13, 3023–3026.CrossRefGoogle Scholar
  96. 96.
    X. Zhang, Y. Tian, F. Jin, J. Wu, Y. Xie, X. Tao, M. Jiang, Cryst. Growth Des., 2005, 5, 565–570.CrossRefGoogle Scholar
  97. 97.
    Q. Zhang, Z. Lin, X. Bu, T. Wu, P. Feng, Chem. Mater., 2008, 20, 3239–3241.CrossRefGoogle Scholar
  98. 98.
    O. Andersen, Environ. Health Persp. 1984, 54, 249–266.CrossRefGoogle Scholar
  99. 99.
    C. P. Rao, J. R. Dorfman, R. H. Holm, Inorg. Chem., 1986, 25, 428–447.CrossRefGoogle Scholar
  100. 100.
    L. Bustos, M. A. Khan, D. G. Tuck, Can. J. Chem., 1983, 61, 1146–1152.CrossRefGoogle Scholar
  101. 101.
    K. Baba, T. Okamura, H. Yamamoto, T. Yamamoto, N. Ueyama, Inorg. Chem., 2008, 47, 2837–2848.PubMedCrossRefGoogle Scholar
  102. 102.
    W. P. Chung, J. C. Dewan, M. A. Walters, J. Am. Chem. Soc., 1991, 113, 525–530.CrossRefGoogle Scholar
  103. 103.
    J. Pande, M. Vašák, J. H. R. Kägi, Biochemistry, 1985, 24, 6717–6722.PubMedCrossRefGoogle Scholar
  104. 104.
    A. H. Robbins, D. E. McRee, M. Williamson, S. A. Collett, N. H. Xuong, W. F. Furey, B. C. Wang, C. D. Stout, J. Mol. Biol., 1991, 221, 1269–1293.Google Scholar
  105. 105.
    R. G. Gale, A. B. Smith, E. M. Walker, Jr, Ann. Clin. Lab. Sci., 1981, 11(6) 476–483.Google Scholar
  106. 106.
    T. Trindade, N. Pickett, P. O’Brien, Chem. Mater., 2001, 13, 3843–3858.CrossRefGoogle Scholar
  107. 107.
    N. Revaprasadu, S. N. Mlondo, Pure Appl. Chem., 2006, 78, 1691–1702.Google Scholar
  108. 108.
    V. S. R. Rajasckhar Pullabhotta, M. Scriba, N. Revaprasadu, J. Nanosci. Nanotechnol., 2011, 11(2), 1201–1204.CrossRefGoogle Scholar
  109. 109.
    E. R. T. Tiekink, CrystEngComm, 2003, 5, 101–113.CrossRefGoogle Scholar
  110. 110.
    J. A. McCleverty, S. Gill, R. S. Z. Kowalski, N. A. Bailey, H. Adams, K. W. Lumbard, M. A. Murphy, J. Chem. Soc., Dalton Trans., 1982, 493–503.Google Scholar
  111. 111.
    S. M. Zemskova, L. A. Glinskaya, R. F. Klevtsova, M. A. Fedotov, S. V. Larionov, J. Struct. Chem., 1999, 40, 284–292.Google Scholar
  112. 112.
    L. A. Glinskaya, S. M. Zemskova, R. F. Klevtsova, S. V. Larionov, S. A. Gromilov, Polyhedron, 1992, 11, 2951–2956.CrossRefGoogle Scholar
  113. 113.
    R. Baggio, A. Frigerio, E. B. Halac, D. Vega, M. Perec, J. Chem. Soc., Dalton Trans., 1992, 1887–1892.Google Scholar
  114. 114.
    R. Baggio, A. Frigerio, E. B. Halac, D. Vega, M. Perec, J. Chem. Soc., Dalton Trans., 1992, 549–554.Google Scholar
  115. 115.
    A. Kropidlowska, J. Chojnacki, B. Becker, Acta Crystallogr., Sect. E, 2008, m832.Google Scholar
  116. 116.
    A. Kropidlowska, J. Chojnacki, A. Fahmi, B. Becker, Dalton Trans., 2008, 6825–6831.Google Scholar
  117. 117.
    J. S. Casas, A. Sánchez, J. Bravo, S. García-Fontán, E. E. Castellano, M. M. Jones, Inorg. Chim. Acta, 1989, 158, 119–126.Google Scholar
  118. 118.
    L. H. van Poppel, T. L. Groy, M. T. Caudle, Inorg. Chem., 2004, 43, 3180–3186.PubMedCrossRefGoogle Scholar
  119. 119.
    M. A. Malik, M. Motevalli, T. Saeed, P. O’Brien, Adv. Mater., 1993, 5, 653–654.CrossRefGoogle Scholar
  120. 120.
    S. M. Zemskova, L. A. Glinskaya, R. F. Klevtsova, S. V. Larionov, Zh. Neorg. Khim. (Russ. J. Inorg. Chem.), 1993, 38, 466–471.Google Scholar
  121. 121.
    O. D. Fox, M. G. B. Drew, E. J. S. Wilkinson, P. D. Beer, Chem. Commun., 2000, 391–392.Google Scholar
  122. 122.
    F.-X. Wei, X. Yin, W.-G. Zhang, J. Fan, X.-H. Jiang, S.-L. Wang, Z. Kristallogr.-New Cryst. Struct., 2005, 220, 417–419.Google Scholar
  123. 123.
    Ch. S. Lai, E. R. T. Tiekink, Appl. Organomet. Chem., 2003, 17, 139–140.CrossRefGoogle Scholar
  124. 124.
    M. Saravanan, R. Ramalingam, B. Arulprakasam, G. Bocelli, A. Cantoni, E. R. T. Tiekink, Z. Kristallogr.-New Cryst. Struct., 2005, 220, 477–478.Google Scholar
  125. 125.
    Y.-H. Deng, J. Liu, N. Li, Y.-L. Yang, H.-W. Ma, Huaxue Xuebao (Acta Chim. Sinica), 2007, 65, 2868–2874.Google Scholar
  126. 126.
    S. Thirumaran, K. Ramlingam, G. Bocelli, L. Righi, Polyhedron, 2009, 28, 263–268.CrossRefGoogle Scholar
  127. 127.
    C. M. Dee, E. R. T. Tiekink, Acta Crystallogr., Sect. E, 2002, 58, m136–m138.Google Scholar
  128. 128.
    P. Poplaukhin, E. R. T. Tiekink, Acta Crystallogr., Sect. E, 2008, 64, m1176.Google Scholar
  129. 129.
    D. V. Konarev, S. S. Khasanov, D. V. Lopatin, V. V. Rodaev, R. N. Lyubovskaya, Russ. Chem. Bull., Int. Ed., 2007, 56, 2145–2161.Google Scholar
  130. 130.
    A.-K. Duhme, S. Pohl, H. Strasdeit, Inorg. Chim. Acta, 1990, 175, 5–8.Google Scholar
  131. 131.
    V. Avila, R. E. Benson, G. A. Broker, L. M. Daniels, E. R. T. Tiekink, Acta Crystallogr., Sect. E, 2006, 62, m1425–m1427.Google Scholar
  132. 132.
    J. Fan, F.-X. Wei, W.-G. Zhang, X. Yin, Ch.-S. Lai, E. R. T. Tiekink, Huaxue Xuebao, 2007, 65, 2014–2018.Google Scholar
  133. 133.
    J. Chai, Ch. S. Lai, J. Yan, E. R. T. Tiekink, Appl. Organomet. Chem., 2003, 17, 249–250.CrossRefGoogle Scholar
  134. 134.
    X. F. Wang, Y. F. Wang, J. Wang, Zh. H. Zhang, J. Gao, B. Liu, Y. Ch. Jiang, X. D. Zhang, Russ. J. Coord. Chem., 2008, 34, 555–563.CrossRefGoogle Scholar
  135. 135.
    I. N. Polyakova, A. L. Poznyak, V. S. Sergienko, L. V. Stopolyanskaya, Crystallogr. Rep., 2001, 46, 40–45.CrossRefGoogle Scholar
  136. 136.
    E.-L. Yang, Y.-L. Jiang, Y.-L. Wang, Q.-Y. Liu, Acta Crystalogr., Sect. C, 2010, 66, m231–m234.Google Scholar
  137. 137.
    J. Sanchíz, P. Esparza, S. Domínguez, A. Mederos, D. Saysell, A. Sánchez, R. Ruano, J. M. Arrieta, J. Chem. Soc., Dalton Trans., 2001, 1559–1565.Google Scholar
  138. 138.
    B-X. Liu, D.-J. Xu, Acta Crystallogr., Sect. E, 2005. 61, m1218–m1220.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rosa Carballo
    • 1
  • Alfonso Castiñeiras
    • 2
  • Alicia Domínguez-Martín
    • 3
  • Isabel García-Santos
    • 2
  • Juan Niclós-Gutiérrez
    • 3
  1. 1.Departamento de Química Inorgánica, Facultad de QuímicaUniversidad de VigoVigoSpain
  2. 2.Departamento de Química Inorgánica, Facultad de FarmaciaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Departamento de Química Inorgánica, Facultad de FarmaciaUniversidad de GranadaGranadaSpain

Personalised recommendations