Imaging and Sensing of Cadmium in Cells

  • Masayasu TakiEmail author
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)


Cadmium is one of the highly toxic transition metals for human beings and is known as a human carcinogen. Once humans are exposed to Cd2+ on a chronic basis, Cd2+ primarily accumulates in the liver and kidney where it forms complexes with small peptides and proteins via sulfhydryl groups. Complexed Cd2+ or the ionic Cd2+ is then taken up by target cells and tissues and exerts the toxicity. However, the question of how non-essential Cd2+ crosses the cell membranes remains unanswered. Furthermore, the molecular mechanism of Cd2+-induced physiological signaling disruption in cells is still not fully elucidated. Investigations of Cd2+ uptake kinetics, distributions, and concentrations in cells require chemical tools for its detection. Because of the easy use and high spatiotemporal resolution, optical imaging using fluorescence microscopy is a well-suited method for monitoring Cd2+ in biological samples. This chapter summarizes design principles of small molecule fluorescent sensors for Cd2+ detection in aqueous solution and their photophysical and metal-binding properties. Also the applications of probes for fluorescence imaging of Cd2+ in a variety of cell types are demonstrated.


cadmium ion cellular uptake fluorescent probe fluorescence imaging molecular design 



amyotrophic lateral sclerosis




Agency for Toxic Substances and Disease Registry


bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid






Chinese hamster ovary






dendritic cell




Environmental Protection Agency


flavin adenine dinucleotide




4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid


human umbilical vein endothelial cell


intramolecular charge transfer


3-(N-morpholino)propanesulfonic acid


magnetic resonance imaging


reduced form of nicotinamide adenine dinucleotide




photoinduced charge transfer


photoinduced electron transfer


propidium iodide


photoinduced proton transfer


reactive oxygen species






Yellow Cameleon



This work was financially supported by a Grant-in-Aid for Young Scientists (B) (No.17750155 to M.T.) from the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    R. L. Chaney, J. A. Ryan, Y. M. Li, S. L. Brown, in Cadmium in Soils and Plants, Eds M. J. McLaughlin, B. R. Singh, Springer-Verlag, Berlin, 1999, Vol. 85, pp. 219–256.Google Scholar
  2. 2.
    A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11–18.CrossRefGoogle Scholar
  3. 3.
    D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, Science 2003, 300, 1434–1436.PubMedCrossRefGoogle Scholar
  4. 4.
    J. D. Park, N. J. Cherrington, C. D. Klaassen, Toxicol. Sci. 2002, 68, 288–294.PubMedCrossRefGoogle Scholar
  5. 5.
    C. C. Bridges, R. K. Zalups, Toxicol. Appl. Pharmacol. 2005, 204, 274–308.PubMedCrossRefGoogle Scholar
  6. 6.
    B. Okuda, Y. Iwamoto, H. Tachibana, M. Sugita, Clin. Neurol. Neurosurg. 1997, 99, 263–265.PubMedCrossRefGoogle Scholar
  7. 7.
    L. F. Jiang, T. M. Yao, Z. L. Zhu, C. Wang, L. N. Ji, Biochim. Biophys. Acta 2007, 1774, 1414–1421.CrossRefGoogle Scholar
  8. 8.
    M. Bergomi, M. Vinceti, G. Nacci, V. Pietrini, P. Brätter, D. Alber, A. Ferrari, L. Vescovi, D. Guidetti, P. Sola, S. Malagu, C. Aramini, G. Vivoli, Environ. Res. 2002, 89, 116–123.PubMedCrossRefGoogle Scholar
  9. 9.
    Agency for Toxic Substances and Disease Registry. Priority List of Hazardous Substances for 2011.
  10. 10.
    R. M. Ray, M. M. Mumtaz, Food Chem. Toxicol. 1996, 34, 1163–1165.Google Scholar
  11. 11.
    G. Bertin, D. Averbeck, Biochimie 2006, 88, 1549–1559.PubMedCrossRefGoogle Scholar
  12. 12.
    T. von Zglinicki, C. Edwall, E. Östlund, B. Lind, M. Nordberg, N. R. Ringertz, J. Wroblewski, J. Cell Sci. 1992, 103, 1073–1081.Google Scholar
  13. 13.
    U. K. Misra, G. Gawdi, S. V. Pizzo, Cell. Signal. 2003, 15, 1059–1070.PubMedCrossRefGoogle Scholar
  14. 14.
    M. P. Waalkes, J. Inorg. Biochem. 2000, 79, 241–244.Google Scholar
  15. 15.
    R. Y. Tsien, Nat. Cell Biol. 2003, SS16–SS21.Google Scholar
  16. 16.
    I. Johnson, Histochem. J. 1998, 30, 123–140.PubMedCrossRefGoogle Scholar
  17. 17.
    E. L. Que, D. W. Domaille, C. J. Chang, Chem. Rev. 2008, 108, 1517–1549.PubMedCrossRefGoogle Scholar
  18. 18.
    P. J. Jiang, Z. J. Guo, Coord. Chem. Rev. 2004, 248, 205–229.CrossRefGoogle Scholar
  19. 19.
    A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515–1566.PubMedCrossRefGoogle Scholar
  20. 20.
    F. Thévenod, Toxicol. Appl. Pharmacol. 2009, 238, 221–239.PubMedCrossRefGoogle Scholar
  21. 21.
    M. T. Antonio, L. Corredor, M. L. Leret, Toxicol. Lett. 2003, 143, 331–340.PubMedCrossRefGoogle Scholar
  22. 22.
    E. López, C. Arce, M. J. Oset-Gasque, S. Cañadas, M. P. González, Free Radic. Biol. Med. 2006, 40, 940–951.Google Scholar
  23. 23.
    Y. D. Wang, J. Fang, S. S. Leonard, K. M. K. Rao, Free Radic. Biol. Med. 2004, 36, 1434–1443.Google Scholar
  24. 24.
    M. Waisberg, P. Joseph, B. Hale, D. Beyersmann, Toxicology 2003, 192, 95–117.PubMedCrossRefGoogle Scholar
  25. 25.
    F. Thévenod, Nephron Physiol. 2003, 93, p87–93.Google Scholar
  26. 26.
    K. Nakamura, Y. Yasunaga, D. Ko, L. L. Xu, J. W. Moul, D. M. Peehl, S. Srivastava, J. S. Rhim, Int. J. Oncol. 2002, 20, 543–547.PubMedGoogle Scholar
  27. 27.
    R. K. Zalups, S. Ahmad, Toxicol. Appl. Pharmacol. 2003, 186, 163–188.PubMedCrossRefGoogle Scholar
  28. 28.
    F. Thévenod, Biometals 2010, 23, 857–875.PubMedCrossRefGoogle Scholar
  29. 29.
    C. Erfurt, E. Roussa, F. Thévenod, Am. J. Physiol. Cell Physiol. 2003, 285, C1367–C1376.Google Scholar
  30. 30.
    D. R. Richardson, A. C. G. Chua, E. Baker, J. Lab. Clin. Med. 1999, 133, 144–151.PubMedCrossRefGoogle Scholar
  31. 31.
    N. Adonai, K. N. Nguyen, J. Walsh, M. Iyer, T. Toyokuni, M. E. Phelps, T. McCarthy, D. W. McCarthy, S. S. Gambhir, Proc. Natl. Acad. Sci. USA 2002, 99, 3030–3035.CrossRefGoogle Scholar
  32. 32.
    A. Takeda, H. Tamano, S. Enomoto, N. Oku, Cancer Res. 2001, 61, 5065–5069.PubMedGoogle Scholar
  33. 33.
    R. McRae, P. Bagchi, S. Sumalekshmy, C. J. Fahrni, Chem. Rev. 2009, 109, 4780–4827.PubMedCrossRefGoogle Scholar
  34. 34.
    J. W. Putney Jr., Cell Calcium 1990, 11, 611–624.PubMedCrossRefGoogle Scholar
  35. 35.
    S. Ueno, M. Tsukamoto, T. Hirano, K. Kikuchi, M. K. Yamada, N. Nishiyama, T. Nagano, N. Matsuki, Y. Ikegaya, J. Cell Biol. 2002, 158, 215–220.PubMedCrossRefGoogle Scholar
  36. 36.
    Calcium Measurement Methods, Vol. 43 of Neuromethods, Eds A. Verkhratsky, O. H. Petersen, Humana Press, New York, 2010, pp. 1–256.Google Scholar
  37. 37.
    T. Kawanai, M. Fujinaga, K. Koizumi, I. Kurotani, E. Hashimoto, M. Satoh, S. Imai, N. Miyoshi, Y. Oyama, Biometals 2011, 24, 903–914.PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Nishimura, J. Yamaguchi, A. Kanada, K. Horimoto, K. Kanemaru, M. Satoh, Y. Oyama, Toxicol. Vitro 2006, 20, 211–216.CrossRefGoogle Scholar
  39. 39.
    G. Grynkiewicz, M. Poenie, R. Y. Tsien, J. Biol. Chem. 1985, 260, 3440–3450.Google Scholar
  40. 40.
    H. D. Le, A. Omelchenko, L. V. Hryshko, A. Uliyanova, M. Condrescu, J. P. Reeves, J. Physiol. 2005, 563, 105–117.PubMedCrossRefGoogle Scholar
  41. 41.
    M. Soibinet, V. Souchon, I. Leray, B. Valeur, J. Fluoresc. 2008, 18, 1077–1082.PubMedCrossRefGoogle Scholar
  42. 42.
    A. G. Kanthasamy, G. E. Isom, J. L. Borowitz, Toxicol. Lett. 1995, 81, 151–157.PubMedCrossRefGoogle Scholar
  43. 43.
    P. M. Hinkle, E. D. Shanshala, E. J. Nelson, J. Biol. Chem. 1992, 267, 25553–25559.Google Scholar
  44. 44.
    B. E. Tvermoes, G. S. Bird, J. H. Freedman, PLoS One 2011, 6, e20542.PubMedCrossRefGoogle Scholar
  45. 45.
    E. U. Akkaya, M. E. Huston, A. W. Czarnik, J. Am. Chem. Soc. 1990, 112, 3590–3593.CrossRefGoogle Scholar
  46. 46.
    M. Choi, M. Kim, K. D. Lee, K. N. Han, I. A. Yoon, H. J. Chung, J. Yoon, Org. Lett. 2001, 3, 3455–3457.PubMedCrossRefGoogle Scholar
  47. 47.
    T. Gunnlaugsson, T. C. Lee, R. Parkesh, Org. Lett. 2003, 5, 4065–4068.PubMedCrossRefGoogle Scholar
  48. 48.
    T. Gunnlaugsson, T. C. Lee, R. Parkesh, Tetrahedron 2004, 60, 11239–11249.CrossRefGoogle Scholar
  49. 49.
    R. Charest, P. F. Blackmore, B. Berthon, J. H. Exton, J. Biol. Chem. 1983, 258, 8769–8773.Google Scholar
  50. 50.
    C. J. Frederickson, Int. Rev. Neurobiol. 1989, 31, 145–238.PubMedCrossRefGoogle Scholar
  51. 51.
    L. Xue, C. Liu, H. Jiang, Org. Lett. 2009, 11, 1655–1658.PubMedCrossRefGoogle Scholar
  52. 52.
    L. Xue, Q. Liu, H. Jiang, Org. Lett. 2009, 11, 3454–3457.PubMedCrossRefGoogle Scholar
  53. 53.
    L. Prodi, M. Montalti, N. Zaccheroni, J. S. Bradshaw, R. M. Izatt, P. B. Savage, Tetrahedron Lett. 2001, 42, 2941–2944.CrossRefGoogle Scholar
  54. 54.
    X. L. Tang, X. H. Peng, W. Dou, J. Mao, J. R. Zheng, W. W. Qin, W. S. Liu, J. Chang, X. J. Yao, Org. Lett. 2008, 10, 3653–3656.PubMedCrossRefGoogle Scholar
  55. 55.
    Y. M. Zhang, Y. Chen, Z. Q. Li, N. Li, Y. Liu, Bioorg. Med. Chem. 2010, 18, 1415–1420.PubMedCrossRefGoogle Scholar
  56. 56.
    M. Mameli, M. C. Aragoni, M. Arca, C. Caltagirone, F. Demartin, G. Farruggia, G. De Filippo, F. A. Devillanova, A. Garau, F. Isaia, V. Lippolis, S. Murgia, L. Prodi, A. Pintus, N. Zaccheroni, Chem. Eur. J. 2010, 16, 919–930.PubMedGoogle Scholar
  57. 57.
    L. Xue, G. P. Li, Q. Liu, H. H. Wang, C. Liu, X. L. Ding, S. G. He, H. Jiang, Inorg. Chem. 2011, 50, 3680–3690.PubMedCrossRefGoogle Scholar
  58. 58.
    T. Y. Cheng, T. Wang, W. P. Zhu, X. L. Chen, Y. J. Yang, Y. F. Xu, X. H. Qin, Org. Lett. 2011, 13, 3656–3659.PubMedCrossRefGoogle Scholar
  59. 59.
    X. J. Peng, J. J. Du, J. L. Fan, J. Y. Wang, Y. K. Wu, J. Z. Zhao, S. G. Sun, T. Xu, J. Am. Chem. Soc. 2007, 129, 1500–1501.PubMedCrossRefGoogle Scholar
  60. 60.
    Z. W. Dong, L. Wang, J. P. Xu, Y. L. Li, Y. Zhang, S. Zhang, J. Y. Miao, Toxicol. Vitro 2009, 23, 105–110.CrossRefGoogle Scholar
  61. 61.
    T. Y. Cheng, Y. F. Xu, S. Y. Zhang, W. P. Zhu, X. H. Qian, L. P. Duan, J. Am. Chem. Soc. 2008, 130, 16160–16161.PubMedCrossRefGoogle Scholar
  62. 62.
    Y. Y. Yang, T. Y. Cheng, W. P. Zhu, Y. F. Xu, X. H. Qian, Org. Lett. 2011, 13, 264–267.PubMedCrossRefGoogle Scholar
  63. 63.
    W. M. Liu, L. W. Xu, R. L. Sheng, P. F. Wang, H. P. Li, S. K. Wu, Org. Lett. 2007, 9, 3829–3832.PubMedCrossRefGoogle Scholar
  64. 64.
    R. Y. Tsien, M. Poenie, Trends Biochem. Sci. 1986, 11, 450–455.Google Scholar
  65. 65.
    M. Taki, M. Desaki, A. Ojida, S. Iyoshi, T. Hirayama, I. Hamachi, Y. Yamamoto, J. Am. Chem. Soc. 2008, 130, 12564–12565.PubMedCrossRefGoogle Scholar
  66. 66.
    Z. P. Liu, C. L. Zhang, W. J. He, Z. H. Yang, X. A. Gao, Z. J. Guo, Chem. Commun. 2010, 46, 6138–6140.CrossRefGoogle Scholar
  67. 67.
    C. L. Lu, Z. C. Xu, J. N. Cui, R. Zhang, X. H. Qian, J. Org. Chem. 2007, 72, 3554–3557.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental Studies and Graduate School of Global Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations