Determination of Cadmium in Biological Samples

  • Katrin KlotzEmail author
  • Wobbeke Weistenhöfer
  • Hans Drexler
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)


Analyses of cadmium concentrations in biological material are performed using inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), but also electrochemical methods, neutron activation analysis (NAA), and X-ray fluorescence spectrometry (XRF). The predominant sample matrices include blood, plasma, serum, and urine, as well as hair, saliva, and tissue of kidney cortex, lung, and liver. While cadmium in blood reveals rather the recent exposure situation, cadmium in urine reflects the body burden and is an indicator for the cumulative long term exposure.

After chronic exposure, cadmium accumulates in the human body and causes kidney diseases, especially lesions of proximal tubular cells. A tubular proteinuria causes an increase in urinary excretion of microproteins. Excretions of retinol binding protein (RBP), β2-microglobulin (β2-M), and α1-microglobulin are validated biomarkers for analyzing cadmium effects. For this purpose, immunological procedures such as ELISA, and radio- and latex-immunoassays are used.

However, proteinuria is not specific to cadmium, but can also occur after exposure to other nephrotoxic agents or due to various kidney diseases. In summary, cadmium in urine and blood are the most specific biomarkers of cadmium exposure. A combination of parameters of exposure (cadmium in blood, cadmium in urine) and parameters of effect (e.g., β2-M, RBP) is required to reveal cadmium-induced nephrological effects.


AAS analysis biomonitoring blood cadmium ICP-MS immunoassay urine 



α1-microglobulin = protein HC


atomic absorption spectrometry


atomic emission spectroscopy






differential pulse anodic stripping voltammetry


1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide


end-capped transversal heating graphite tubes


enzyme-linked immunosorbent assay


External Quality Assessment Scheme


electrothermal atomic absorption spectrometry


electrothermal vaporization inductively coupled plasma mass spectrometry


flow injection inductively coupled plasma atomic emission spectrometry


graphite furnace atomic absorption spectrometry


hexamethylene ammonium


hexamethylene dithiocarbamidate


inductively coupled plasma atomic emission spectroscopy


inductively coupled plasma mass spectrometry


inductively coupled plasma optical emission spectroscopy


laser ablation inductively coupled plasma mass spectrometry


limit of detection




methyl isobutyl ketone


neutron activation analysis




potentiometric stripping analysis


quadrupole mass spectrometry


retinol-binding protein


sector field mass spectrometry


X-ray fluorescence spectrometry



We wish to thank Dr. Thomas Göen and Mrs Piia Lämmlein for their support in preparing this manuscript.


  1. 1.
    CDC, “Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services, Centers for Disease Control and Prevention”, CDC, Atlanta, Georgia, USA, 2009.Google Scholar
  2. 2.
    EUROMETAUX, “Management of the risk related to chronic occupational exposure to cadmium and its compounds”, 2005.Google Scholar
  3. 3.
    UBA, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2011, 54, 981–996.Google Scholar
  4. 4.
    Cadmium. Determination in Urine (Electrothermal atomic absorption spectrometry). Biomonitoring Methods, Analyses of Hazardous Substances in Biological Materials, Wiley-VCH 1984 (
  5. 5.
    Antimony, Lead, Cadmium, Platinum, Mercury, Tellurium, Thallium, Bismuth, Tungsten, Tin. Determination in Urine (Inductively coupled plasma quadrupole mass spectrometry). Biomonitoring Methods, Analyses of Hazardous Substances in Biological Materials, Wiley-VCH 1999 (
  6. 6.
    M. Ikeda, F. Ohashi, Y. Fukui, S. Sakuragi, J. Moriguchi, Int. Arch. Occup. Envir. Health 2011, 84, 139–150.CrossRefGoogle Scholar
  7. 7.
    M. T. Siles Cordero, A. Garcia de Torres, J. M. Cano Pavón, C. Bosch Ojeda, Mikrochim. Acta 1994, 116, 173–182.Google Scholar
  8. 8.
    Z. W. Zhang, S. Shimbo, N. Ochi, M. Eguchi, T. Watanabe, C. S. Moon, M. Ikeda, Sci. Total Envir. 1997, 205, 179–187.CrossRefGoogle Scholar
  9. 9.
    F. Zheng, B. Hu, Talanta 2011, 85, 1166–1173.PubMedCrossRefGoogle Scholar
  10. 10.
    R. Forrer, K. Gautschi, H. Lutz, Biol. Trace Elem. Res. 2001, 80, 77–93.CrossRefGoogle Scholar
  11. 11.
    J. P. Goullé, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Lainé, D. Bouige, C. Lacroix, Forensic Sci. Int. 2005, 153, 39–44.Google Scholar
  12. 12.
    P. Schramel, I. Wendler, J. Angerer, Int. Arch. Occup. Envir. Health 1997, 69, 219–223.CrossRefGoogle Scholar
  13. 13.
    M. T. Siles Cordero, E. I. Vereda Alonso, A. Garcia De Torres, J. M. Cano Pavón, J. Anal. At. Spectrometry 1996, 11, 107–110.Google Scholar
  14. 14.
    J. P. Goullé, E. Saussereau, L. Mahieu, D. Bouige, S. Groenwont, M. Guerbet, C. Lacroix, J. Anal. Toxicol. 2009, 33, 92–98.Google Scholar
  15. 15.
    S. Satarug, J. R. Baker, P. E. B. Reilly, M. R. Moore, D. J. Williams, Arch. Envir. Health 2002, 57, 69–77.CrossRefGoogle Scholar
  16. 16.
    H. I. Afridi, T. G. Kazi, M. K. Jamali, G. H. Kazi, M. B. Arain, N. Jalbani, G. Q. Shar, R. A. Sarfaraz, Toxicol. Indust. Health 2006, 22, 381–393.Google Scholar
  17. 17.
    Y. Fukui, F. Ohashi, S. Sakuragi, J. Moriguchi, M. Ikeda, Indust. Health 2011, 49, 338–343.Google Scholar
  18. 18.
    E. García-Esquinas, B. Pérez-Gómez, M. A. Fernández, A. M. Pérez-Meixeira, E. Gil, C. D. Paz, A. Iriso, J. C. Sanz, J. Astray, M. Cisneros, A. D. Santos, A. Asensio, J. M. García-Sagredo, J. F. García, J. Vioque, M. Pollán, G. López-Abente, M. J. González, M. Martínez, P. A. Bohigas, R. Pastor, N. Aragonés, Chemosphere 2011, 85, 268–276.PubMedCrossRefGoogle Scholar
  19. 19.
    C. J. Horng, J. L. Tsai, P. H. Horng, S. C. Lin, S. R. Lin, C. C. Tzeng, Talanta 2002, 56, 1109–1115.PubMedCrossRefGoogle Scholar
  20. 20.
    C. A. Roberts, J. M. Clark, Bull. Envir. Contam. Toxicol. 1986, 36, 496–499.CrossRefGoogle Scholar
  21. 21.
    F. Kummrow, F. F. Silva, R. Kuno, A. L. Souza, P. V. Oliveira, Talanta 2008, 75, 246–252.PubMedCrossRefGoogle Scholar
  22. 22.
    P. Olmedo, A. Pla, A. F. Hernández, O. López-Guarnido, L. Rodrigo, F. Gil, Anal. Chim. Acta 2010, 659, 60–67.CrossRefGoogle Scholar
  23. 23.
    K. S. Subramanian, J. C. Meranger, Clin. Chem. 1981, 27, 1866–1871.PubMedGoogle Scholar
  24. 24.
    C. J. Horng, Analyst 1996, 121, 1511–1514.PubMedCrossRefGoogle Scholar
  25. 25.
    Cadmium. Inversvoltammetrie (DPP) in Harn, Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Band 2: Analysen in biologischem Material, Wiley-VCH 1983.Google Scholar
  26. 26.
    A. N. Onar, A. Temizer, Analyst 1987, 112, 227–229.PubMedCrossRefGoogle Scholar
  27. 27.
    W. Wasiak, W. Ciszewska, A. Ciszewski, Anal. Chim. Acta 1996, 335, 201–207.CrossRefGoogle Scholar
  28. 28.
    P. Ostapczuk, Anal. Chim. Acta 1993, 273, 35–40.CrossRefGoogle Scholar
  29. 29.
    M. A. Moreno, C. Marin, F. Vinagre, P. Ostapczuk, Sci. Total Envir. 1999, 229, 209–215.CrossRefGoogle Scholar
  30. 30.
    P. Ostapczuk, Clin. Chem. 1992, 38, 1995–2001.PubMedGoogle Scholar
  31. 31.
    A. Viksna, E. S. Lindgren, Anal. Chim. Acta 1997, 353, 307–311.CrossRefGoogle Scholar
  32. 32.
    D. Jagner, M. Josefson, S. Westerlund, Anal. Chim. Acta 1981, Vol. 128, 155–161.CrossRefGoogle Scholar
  33. 33.
    D. R. Chettle, J. Radioanal. Nucl. Chem. 2006, 268, 653–661.CrossRefGoogle Scholar
  34. 34.
    M. C. Scott, D. R. Chettle, Scand. J. Work, Envir. Health 1986, 12, 81–96.Google Scholar
  35. 35.
    D. R. Chettle, D. M. Franklin, C. J. G. Guthrie, M. C. Scott, L. J. Somervaille, Biol. Trace Elem. Res. 1987, 13, 191–208.CrossRefGoogle Scholar
  36. 36.
    K. J. Ellis, S. H. Cohn, J. Toxicol. Envir. Health 1985, 15, 173–187.Google Scholar
  37. 37.
    F. E. McNeill, D. R. Chettle, Appl. Radiat. Isotopes 1998, 49, 699–700.CrossRefGoogle Scholar
  38. 38.
    K. W. Lieberman, H. H. Kramer, Anal. Chem. 1970, 42, 266–267.PubMedCrossRefGoogle Scholar
  39. 39.
    J. R. W. Woittiez, M. De La Cruz Tangonan, J. Radioanal. Nucl. Chem. 1992, 158, 313–321.CrossRefGoogle Scholar
  40. 40.
    M. Saiki, M. B. A. Vasconcellos, L. J. De Arauz, R. Fulfaro, J. Radioanal. Nucl. Chem. 1998, 236, 25–28.CrossRefGoogle Scholar
  41. 41.
    J. Kucera, L. Soukal, J. Radioanal. Nucl. Chem. 1993, 168, 185–199.CrossRefGoogle Scholar
  42. 42.
    L. Tandon, B. F. Ni, X. X. Ding, W. D. Ehmann, E. J. Kasarskis, W. R. Markesbery, J. Radioanal. Nucl. Chem. 1994, 179, 331–339.CrossRefGoogle Scholar
  43. 43.
    J. Börjesson, T. Bellander, L. Järup, C. G. Elinder, S. Mattsson, Occupat. Environ. Med. 1997, 54, 424–431.CrossRefGoogle Scholar
  44. 44.
    J. O. Christoffersson, S. Mattsson, Phys. Med. Biol. 1983, 28, 1135–1144.PubMedCrossRefGoogle Scholar
  45. 45.
    U. Nilsson, S. Skerfving, Scand. J. Work, Environ. Health 1993, 19, 54–58.Google Scholar
  46. 46.
    RECIPE Chemicals + Instruments GmbH, Munich, Germany.Google Scholar
  47. 47.
    SERO AS, Seronorm™ Trace Elements Urine, Serum, Whole Blood, Billingstad, Norway.Google Scholar
  48. 48.
    T. Göen, K. H. Schaller, H. Drexler, Int. J. Hyg. Environ. Health (in press) 2011.Google Scholar
  49. 49.
    J. P. Weber, Sci. Total Environ. 1988, 71, 111–123.CrossRefGoogle Scholar
  50. 50.
    UBA, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2011, 54, 981–996.Google Scholar
  51. 51.
    M. Wilhelm, U. Ewers, C. Schulz, Int. J. Hyg. Environ. Health 2004, 207, 69–73.CrossRefGoogle Scholar
  52. 52.
    K. Becker, S. Kaus, C. Krause, P. Lepom, C. Schulz, M. Seiwert, B. Seifert, Int. J. Hyg. Environ.l Health 2002, 205, 297–308.Google Scholar
  53. 53.
    K. Becker, C. Schulz, S. Kaus, M. Seiwert, B. Seifert, Int. J. Hyg. Environ. Health 2003, 206, 15–24.CrossRefGoogle Scholar
  54. 54.
    A. Bernard, H. Roels, A. Cardenas, R. Lauwerys, Brit. J. Industr. Med. 1990, 47, 559–565.PubMedGoogle Scholar
  55. 55.
    A. Bernard, BioMetals 2004, 17, 519–523.PubMedCrossRefGoogle Scholar
  56. 56.
    A. Chaumont, F. De Winter, X. Dumont, V. Haufroid, A. Bernard, Occupat. Environ. Med. 2011, 68, 257–264.CrossRefGoogle Scholar
  57. 57.
    T. Kawada, C. Tohyama, S. Suzuki, Int. Arch. Occupat. Environ. Health 1990, 62, 95–100.CrossRefGoogle Scholar
  58. 58.
    H. A. Roels, R. R. Lauwerys, J. P. Buchet, A. M. Bernard, A. Vos, M. Oversteyns, Brit. J. Indust. Med. 1989, 46, 755–764.Google Scholar
  59. 59.
    M. D. Topping, H. W. Forster, C. Dolman, Clinical Chemistry 1986, 32, 1863–1866.PubMedGoogle Scholar
  60. 60.
    F. Wolff, D. Willems, Clin. Biochem. 2008, 41, 418–422.PubMedCrossRefGoogle Scholar
  61. 61.
    A. Bernard, Indian J. Med. Res. 2008, 128, 557–564.Google Scholar
  62. 62.
    P. E. Evrin, P. A. Peterson, L. Wide, I. Berggård, Scand. J. Clin. Lab. Invest. 1971, 28, 439–443.PubMedCrossRefGoogle Scholar
  63. 63.
    A. Bernard, R. R. Lauwerys, Clin. Chem. 1983, 29, 1007–1011.PubMedGoogle Scholar
  64. 64.
    A. Bernard, A. Vyskocil, R. R. Lauwerys, Clin. Chem. 1981, 27, 832–837.PubMedGoogle Scholar
  65. 65.
    N. Terrier, A. Bonardet, B. Descomps, J. P. Cristol, A. M. Dupuy, Clin. Lab. 2004, 50, 675–683.PubMedGoogle Scholar
  66. 66.
    Immundiagnostik AG, ®2-Mikroglobulin ELISA-Kit zur in vitro Bestimmung des ®2-Mikroglobulin aus Plasma, Serum und Urin (;, Bensheim, 2010.
  67. 67.
    ORGENTEC Diagnostika GmbH, Beta-2-Microglobulin, ORG 5BM 96 Tests, 2011.Google Scholar
  68. 68.
    K. A. Burling, P. R. Cutillas, D. Church, M. Lapsley, A. G. W. Norden, Clin. Chim. Acta 2012, 413, 483–489.CrossRefGoogle Scholar
  69. 69.
    H. Shimizu, M. Negishi, Y. Shimomura, M. Mori, Diabetes Res. Clin. Practice 1992, 18, 207–210.Google Scholar
  70. 70.
    S. J. Twyman, J. Overton, D. J. Rowe, Clin. Chim. Acta 2000, 297, 155–161.CrossRefGoogle Scholar
  71. 71.
    J. T. Whicher, C. P. Price, K. Spencer, Crit. Rev. Clin. Lab. Sci. 1983, 18, 213–260.PubMedCrossRefGoogle Scholar
  72. 72.
    K. Jung, M. Pergande, H. J. Graubaum, L. M. Fels, U. Endl, H. Stolte, Clin. Chem. 1993, 39, 757–765.PubMedGoogle Scholar
  73. 73.
    L. Järup, L. Hellström, T. Alfvén, M. D. Carlsson, A. Grubb, B. Persson, C. Pettersson, G. Spång, A. Schütz, C. G. Elinder, Occupat. Environ. Med. 2000, 57, 668–672.CrossRefGoogle Scholar
  74. 74.
    A. Noto, Y. Ogawa, S. Mori, Clin. Chem. 1983, 29, 1713–1716.PubMedGoogle Scholar
  75. 75.
    L. Järup, A. Åkesson, Toxicol. Appl. Pharmacol. 2009, 238, 201–208.PubMedCrossRefGoogle Scholar
  76. 76.
    P. Hotz, J. P. Buchet, A. Bernard, D. Lison, R. Lauwerys, Lancet 1999, 354, 1508–1513.PubMedCrossRefGoogle Scholar
  77. 77.
    E. Kobayashi, Y. Suwazono, M. Dochi, R. Honda, M. Nishijo, T. Kido, H. Nakagawa, Toxicol. Lett. 2008, 179, 108–112.PubMedCrossRefGoogle Scholar
  78. 78.
    J. P. Buchet, R. Lauwerys, H. Roels, A. Bernard, P. Bruaux, F. Claeys, G. Ducoffre, P. De Plaen, J. Staessen, A. Amery, P. Lijnen, L. Thijs, D. Rondia, F. Sartor, A. Saint Remy, L. Nick, Lancet 1990, 336, 699–702.PubMedCrossRefGoogle Scholar
  79. 79.
    U. Kumtabtim, A. Siripinyanond, C. Auray-Blais, A. Ntwari, J. S. Becker, Int. J. Mass Spectrom. 2011, 307, 174–181.CrossRefGoogle Scholar
  80. 80.
    Cadmium. Determination in Blood (Flameless atomic absorption spectrometry). Biomonitoring Methods, Analyses of Hazardous Substances in Biological Materials, Wiley-VCH 1981.Google Scholar
  81. 81.
    F. Gil, A. F. Hernández, C. Márquez, P. Femia, P. Olmedo, O. López-Guarnido, A. Pla, Sci. Total Environ. 2011, 409, 1172–1180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Katrin Klotz
    • 1
    Email author
  • Wobbeke Weistenhöfer
    • 1
  • Hans Drexler
    • 1
  1. 1.Institute and Outpatient Clinic of Occupational, Social and Environmental MedicineFriedrich-Alexander University (FAU) of Erlangen-NurembergErlangenGermany

Personalised recommendations