Biogeochemistry of Cadmium and Its Release to the Environment

Part of the Metal Ions in Life Sciences book series (MILS, volume 11)

Abstract

Cadmium is at the end of the 4d-transition series, it is relatively mobile and acutely toxic to almost all forms of life. In this review we present a summary of information describing cadmium’s physical and chemical properties, its distribtion in crustal materials, and the processes, both natural and anthropogenic, that contribute to the metal’s mobilization in the biosphere. The relatively high volatility of Cd metal, its large ionic radius, and its chemical speciation in aquatic systems makes Cd particularly susceptible to mobilization by anthropogenic and natural processes. The biogeochemical cycle of Cd is observed to be significantly altered by anthropogenic inputs, especially since the beginning of the industrial revolution drove increases in fossil fuel burning and non-ferrous metal extraction. Estimates of the flux of Cd to the atmosphere, its deposition and processing in soils and freshwater systems are presented. Finally, the basin scale distribution of dissolved Cd in the ocean, the ultimate receptacle of Cd, is interpreted in light of the chemical speciation and biogeochemical cycling of Cd in seawater. Paradoxically, Cd behaves as a nutrient in the ocean and its cycling and fate is intimately tied to uptake by photosynthetic microbes, their death, sinking and remineralization in the ocean interior. Proximate controls on the incorporation of Cd into biomass are discussed to explain the regional specificity of the relationship between dissolved Cd and the algal nutrient phosphate (PO\(^{3-}_{4} \)) in oceanic surface waters and nutriclines. Understanding variability in the Cd/PO\( ^{3-}_{4} \) is of primary interest to paleoceanographers developing a proxy to probe the links between nutrient utilization in oceanic surface waters and atmospheric CO2 levels. An ongoing international survey of trace elements and their isotopes in seawater will undoubtedly increase our understanding of the deposition, biogeochemical cycling and fate of this enigmatic, sometimes toxic, sometimes beneficial heavy metal.

Keywords

anthropogenic emissions biogeochemistry cadmium cadmium/phosphorus ratio marine biogeochemistry pollution trace metal 

Abbreviations and Definitions

ADIOS

Atmospheric Deposition and Impact on the Open Mediterranean Sea

AMAP

Arctic Monitoring and Assessment Program

ASV

anodic stripping voltammetry

CA

carbonic anhydrase

Cd-CA

cadmium containing carbonic anhydrase

[Cd]tot

total dissolved Cd

CCM

carbon concentrating mechanism

Cd′

sum of inorganic cadmium complexes and free Cd ion

Cw/Cc

water concentration divided by crustal concentration for an element representing a global mobility index

DOC

dissolved organic carbon

EFC

crustal enrichment factor

E0

standard reduction-oxidation potential in volts

EMEP

Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Pollutants in Europe

GEOTRACES

an international program dedicated to studying trace elements and isotopes in the ocean

H2O2-NH4OAc

hydrogen peroxide and ammonium acetate mixture

HNLC

high nutrient-low chlorophyll region of the ocean

K\( ^\prime_{cond, Cd^\prime}\)

conditional stability or equilibrium constant for the binding of an organic ligand to inorganic Cd species

Kd

distribution coefficient

NiCd

nickel-cadmium battery

pCO2

partial pressure of carbon dioxide

pH

–log{H+}

t

metric tonne = 1000 kg

Z

atomic number

Notes

Acknowledgment

This work was supported in part by Canadian Natural Sciences and Engineering Research Council Discovery Grants to JTC and MM.

References

  1. 1.
    J. O. Nriagu, Environment 1990, 32, 7–33.CrossRefGoogle Scholar
  2. 2.
    J. O. Nriagu, J. M. Pacyna, Nature 1988, 333, 134–139.PubMedCrossRefGoogle Scholar
  3. 3.
    J. M. Pacyna, E. G. Pacyna, Environ. Rev. 2001, 9, 269–298.CrossRefGoogle Scholar
  4. 4.
    J. Gaillardet, J. Viers, B. Dupré, in Treatise on Geochemistry, Eds H. D. Holland, K. K. Turekian, Elsevier Ltd., Amsterdam, 2003, Vol. 7, pp. 225–272.Google Scholar
  5. 5.
    J. O. Nriagu, in Cadmium in the Environment, Part I: Ecological Cycling, Ed J. O. Nriagu, John Wiley & Sons, New York, 1980, pp. 35–70.Google Scholar
  6. 6.
    M. Rehkamper, F. Wombacher, T. J. Horner, Z. Xue, Handbook of Environmental Isotope Geochemistry, Ed M. Baskaran, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.Google Scholar
  7. 7.
    W. Pritzkow, S. Wunderli, J. Vogl, G. Fortunato, Int. J. Mass Spectrom. 2007, 261, 74–85.CrossRefGoogle Scholar
  8. 8.
    R. L. Rudnick, S. Gao, in Treatise on Geochemistry, Eds H. D. Holland, K. K. Turekian, Pergamon, Oxford, 2003, pp. 1–64.Google Scholar
  9. 9.
    K. H. Wedepohl, Geochim. Cosmochim. Acta 1995, 59, 1217–1232.CrossRefGoogle Scholar
  10. 10.
    M. Fleischer, A. F. Sarofim, D. W. Fassett, P. Hammond, H. T. Shacklette, I. C. Nisbet, S. Epstein, Environ. Health Persp. 1974, 7, 253–232.CrossRefGoogle Scholar
  11. 11.
    H. Gong, A. W. Rose, N. H. Suhr, Geochim. Cosmochim. Acta 1977, 41, 1687–1692.CrossRefGoogle Scholar
  12. 12.
    E. Callender, in Treatise on Geochemistry, Eds H. D. Holland, K. K. Turekian, Pergamon, Oxford, 2003, Vol. 9, pp. 67–105.Google Scholar
  13. 13.
    S. R. Taylor, S. M. Mclennan, Rev. Geophys. 1995, 33, 241–265.CrossRefGoogle Scholar
  14. 14.
    H. Palme, H. S. C. O’Neill, in Treatise on Geochemistry, Eds H. D. Holland, K. K. Turekian, Pergamon, Oxford, 2007, pp. 1–38.Google Scholar
  15. 15.
    J. O. Nriagu, Science 1996, 272, 223–224.CrossRefGoogle Scholar
  16. 16.
    R. Duce, P. Liss, J. Merrill, E. Atlas, P. Buat-Menard, B. Hicks, J. Miller, J. Prospero, R. Arimoto, T. M. Church, W. Ellis, J. N. Galloway, L. Hansen, T. D. Jickells, A. H. Knap, K. H. Reinhardt, B. Schneider, A. Soudine, J. Tokos, S. Tsunogai, R. Wollast, M. Zhou, Global Biogeochem. Cycles 1991, 5, 193–259.CrossRefGoogle Scholar
  17. 17.
    J. O. Nriagu, in Cadmium in the Envrionment, Part I: Ecological Cycling, Ed J. O. Nriagu, John Wiley & Sons, New York, 1980, pp. 71–104.Google Scholar
  18. 18.
    S. Hong, Geophys. Res. Lett. 2004, 31, 5–8.Google Scholar
  19. 19.
    A. Matsumoto, T. K. Hinkley, Earth Planet. Sci. Lett. 2001, 186, 33–43.Google Scholar
  20. 20.
    K. Bertine, E. D. Goldberg, Science 1971, 173, 233–235.PubMedCrossRefGoogle Scholar
  21. 21.
    D. M. Chizhikov, Cadmium, Pergamon, Oxford, 1966, pp. 263.Google Scholar
  22. 22.
    US Geological Survey, Mineral Commodity Summaries: 2012, US Geological Survey, 2012. 198 p.Google Scholar
  23. 23.
    P. Dunning, in High Performance Pigments, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, pp. 13–26.Google Scholar
  24. 24.
    J. O. Nriagu, Nature 1989, 338, 47–49.CrossRefGoogle Scholar
  25. 25.
    T. Berg, O. Røyset, E. Steinnes, Atm. Environ. 1994, 28, 3519–3536.CrossRefGoogle Scholar
  26. 26.
    T. Berg, E. Steinnes, Met. Ions Biol. Syst., 2005, 44, 1–19.Google Scholar
  27. 27.
    K. Lee, S. D. Hur, S. Hou, S. Hong, X. Qin, J. Ren, Y. Liu, K. J. R. Rosman, C. Barbante, C. F. Boutron, Sci. Total Environ. 2008, 404, 171–181.CrossRefGoogle Scholar
  28. 28.
    F. M. Planchon, C. E. Boutron, C. Barbante, G. Cozzi, V. Gaspari, E. W. Wolff, C. P. Ferrari, P. Cescon, Sci. Total Environ. 2002, 300, 129–142.CrossRefGoogle Scholar
  29. 29.
    E. W. Wolff, E. D. Suttie, D. A. Peel, Atmos. Environ. 1999, 33, 1535–1541.CrossRefGoogle Scholar
  30. 30.
    C. I. Davidson, in Cadmium in the Envrionment, Part I: Ecological Cycling, Ed J. O. Nriagu, John Wiley & Sons, New York, 1980, pp. 115–138.Google Scholar
  31. 31.
    R. A. Duce, G. L. Hoffman, B. J. Ray, I. S. Fletcher, G. T. Wallace, J. L. Fasching, S. E. Piotrowctz, P. R. Walsh, E. J. Hoffman, J. M. Miller, J. L. Hefter, in Marine Pollution Transfers, Eds H. L. Windom, R. A. Duce, D.C. Heath, Lexington, 1976, pp. 77–119.Google Scholar
  32. 32.
    T. Patterson, R. Duce, Tellus B 1991, 43B, 12–29.CrossRefGoogle Scholar
  33. 33.
    C. Barbante, C. Boutron, C. Morel, C. Ferrari, J. L. Jaffrezo, G. Cozzi, V. Gaspari, P. Cescon, J. Environ. Monit. 2003, 5, 328–335.CrossRefGoogle Scholar
  34. 34.
    S. D. Hur, X. Cunde, S. Hong, C. Barbante, P. Gabrielli, K. Lee, C. F. Boutron, Y. Ming, Atmos. Environ. 2007, 41, 8567–8578.CrossRefGoogle Scholar
  35. 35.
    K. Van de Velde, C. Boutron, C. P. Ferrari, A. Moreau, R. Delmas, C. Barbante, T. Bellomi, G. Capodaglio, P. Cescon, Geophys. Res. Lett. 2000, 27, 249–252.CrossRefGoogle Scholar
  36. 36.
    R. A. Duce, G. L. Hoffman, W. H. Zoller, Science 1975, 187, 59–61.PubMedCrossRefGoogle Scholar
  37. 37.
    V. V. Egorov, T. Zhigalov, S. G. Malakhov, J. Geophys. Res. 1970, 75, 3650–&.Google Scholar
  38. 38.
    T. Church, J. Tramontano, D. Whelpdale, M. O. Andreae, J. N. Galloway, W. Keene, A. H. Knap, J. Tokos, J. Geophys. Res. 1991, 96, 18705–18725.Google Scholar
  39. 39.
    J. O. Nriagu, G. S. Lawson, D. J. Gregor, Bull. Environ. Contamin. Toxicol. 1994, 52, 756–759.CrossRefGoogle Scholar
  40. 40.
    J. M. Pacyna, E. G. Pacyna, W. Aas, Atmos. Environ. 2009, 43, 117–127.CrossRefGoogle Scholar
  41. 41.
    C. Guieu, M.-D. Loÿe-Pilot, L. Benyahya, A. Dufour, Marine Chemistry 2010, 120, 164–178.CrossRefGoogle Scholar
  42. 42.
    D. I. Orroño, R. S. Lavado, Chem. Speciat. Bioavail. 2009, 21, 193–198.CrossRefGoogle Scholar
  43. 43.
    K. Lock, C. R. Janssen, Rev. Environ. Contamin. Toxicol. 2003, 178, 1–21.CrossRefGoogle Scholar
  44. 44.
    N. J. Barrow, J. Gerth, G. W. Brummer, J. Soil Sci. 1989, 40, 437–450.CrossRefGoogle Scholar
  45. 45.
    G. W. Bruemmer, J. Gerth, K. G. Tiller, J. Soil Sci. 1988, 39, 37–52.CrossRefGoogle Scholar
  46. 46.
    J. Gerth, G. Brummer, Fresenius Zeitschr. Anal. Chemie 1983, 316, 616–620.CrossRefGoogle Scholar
  47. 47.
    C. E. Martinez, M. B. McBride, Clays and Clay Minerals 1998, 46, 537–545.CrossRefGoogle Scholar
  48. 48.
    B. Lothenbach, G. Furrer, H. Scharli, R. Schulin, Environ. Sci. Technol. 1999, 33, 2945–2952.CrossRefGoogle Scholar
  49. 49.
    J. A. Davis, C. C. Fuller, A. D. Cook, Geochim. Cosmochim. Acta 1987, 51, 1477–1490.CrossRefGoogle Scholar
  50. 50.
    P. S. Hooda, B. J. Alloway, Int. J. Environ. Anal. Chem. 1994, 57, 289–311.CrossRefGoogle Scholar
  51. 51.
    N. J. Barrow, Australian J. Soil Res. 1998, 36, 941–950.CrossRefGoogle Scholar
  52. 52.
    T. H. Christensen, Water Air Soil Pollut. 1984, 21, 105–114.CrossRefGoogle Scholar
  53. 53.
    T. H. Christensen, Water Air Soil Pollut. 1984, 21, 115–125.CrossRefGoogle Scholar
  54. 54.
    J. J. Street, W. L. Lindsay, B. R. Sabey, J. Environ. Quality 1977, 6, 72–77.CrossRefGoogle Scholar
  55. 55.
    W. O. Nelson, P. G. Campbell, Environmental Pollution (Barking, Essex: 1987) 1991, 71, 91–130.Google Scholar
  56. 56.
    J. Viers, B. Dupré, J. Gaillardet, Sci. Total Environ. 2009, 407, 853–868.CrossRefGoogle Scholar
  57. 57.
    L. Hare, A. Tessier, Nature 1996, 380, 430–432.CrossRefGoogle Scholar
  58. 58.
    L. Sigg, R. Behra, in Metal Ions Biological Systems, Vol 44, Eds A. Sigel, H. Sigel, R. K. O. Sigel, Taylor & Francis Ltd, Boca Raton, FL, 2005, pp. 47–73.Google Scholar
  59. 59.
    J. Cao, H. Xue, L. Sigg, Aquat. Geochem. 2006, 12, 375–387.CrossRefGoogle Scholar
  60. 60.
    H. Xue, L. Sigg, Anal. Chim. Acta 1998, 363, 249–259.CrossRefGoogle Scholar
  61. 61.
    G. Abate, J. C. Masini, Organic Geochem. 2002, 33, 1171–1182.CrossRefGoogle Scholar
  62. 62.
    D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. Van Riemsdijk, Environ. Sci. Technol. 1996, 30, 1687–1698.CrossRefGoogle Scholar
  63. 63.
    D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Colloids and Surfaces A-Physicochem. Engin. Aspects 1999, 151, 147–166.CrossRefGoogle Scholar
  64. 64.
    W. H. Otto, S. D. Burton, W. R. Carper, C. K. Larive, Environ. Sci. Technol. 2001, 35, 4900–4904.PubMedCrossRefGoogle Scholar
  65. 65.
    W. H. Otto, W. R. Carper, C. K. Larive, Environ. Sci. Technol. 2001, 35, 1463–1468.PubMedCrossRefGoogle Scholar
  66. 66.
    J. Gardiner, Water Res. 1974, 8, 157–164.CrossRefGoogle Scholar
  67. 67.
    S. Sauve, W. Hendershot, H. Allen, Environ. Sci. Technol. 2000, 34, 1125–1131.CrossRefGoogle Scholar
  68. 68.
    P. A. Yeats, J. Bewers, in Cadmium in the Aquatic Environment, Eds J. O. Nriagu, J. B. Sprague, John Wiley & Sons, New York, 1987, Vol. 19, pp. 19–34.Google Scholar
  69. 69.
    D. P. H. Laxen, Water Res. 1985, 19, 1229–1236.CrossRefGoogle Scholar
  70. 70.
    K. Bruland, M. Lohan, in Treatise on Geochemistry, Eds H. D. Holland, K. K. Turekian, Elsevier, Ltd. Amsterdam, Vol. 6, 2003, pp. 23–47.Google Scholar
  71. 71.
    F. Elbaz-Poulichet, J. Martin, W. Huang, Marine Chem. 1987, 22, 125–136.CrossRefGoogle Scholar
  72. 72.
    A. M. L. Kraepiel, J. F. Chiffoleau, J. M. Martin, F. M. M. Morel, Geochim. Cosmochim. Acta 1997, 61, 1421–1436.CrossRefGoogle Scholar
  73. 73.
    A. M. Shiller, E. A. Boyle, Geochim. Cosmochim. Acta 1991, 55, 3241–3251.CrossRefGoogle Scholar
  74. 74.
    E. A. Boyle, S. S. Huested, B. Grant, Deep-Sea Res. Part A-Oceanogr. Res. Papers 1982, 29, 1355–1364.CrossRefGoogle Scholar
  75. 75.
    J. M. Edmond, A. Spivack, B. C. Grant, M. H. Hu, Z. X. Chen, S. Chen, X. S. Zeng, Continental Shelf Research 1985, 4, 17–36.CrossRefGoogle Scholar
  76. 76.
    E. A. Boyle, F. Sclater, J. M. Edmond, Nature 1976, 263, 42–44.CrossRefGoogle Scholar
  77. 77.
    K. W. Bruland, G. A. Knauer, J. H. Martin, Limnol.Oceanogr. 1978, 23, 618–625.CrossRefGoogle Scholar
  78. 78.
    H. J. W. de Baar, P. M. Saager, R. F. Notling, J. van der Meer, Marine Chem. 1994, 46, 261–281.CrossRefGoogle Scholar
  79. 79.
    R. M. Sherrell, E. A. Boyle, Earth Planet. Sci. Lett. 1992, 111, 155–174.Google Scholar
  80. 80.
    K. W. Bruland, R. P. Franks, in Trace Metals in Seawater, Eds C. S. Wong, E. Boyle, K. W. Bruland, D. Burton, E. D. Goldberg, Plenum, New York, 1983, Vol. 9, pp. 395–414.Google Scholar
  81. 81.
    R. K. Takesue, A. van Geen, Limnol. Oceanogr. 2002, 47, 176–185.CrossRefGoogle Scholar
  82. 82.
    W. S. Broecker, T.-H. Peng, Tracers in the Sea, Eldigio Press, Palisades, 1982.Google Scholar
  83. 83.
    E. A. Boyle, Paleoceanography 1988, 3, 471–489.CrossRefGoogle Scholar
  84. 84.
    E. A. Boyle, Annu. Rev. Earth Planet. Sci. 1992, 20, 245–287.CrossRefGoogle Scholar
  85. 85.
    K. Hester, E. A. Boyle, Nature 1982, 298, 260–262.CrossRefGoogle Scholar
  86. 86.
    Y. Rosenthal, E. A. Boyle, L. Labeyrie, Paleoceanography 1997, 12, 787–796.CrossRefGoogle Scholar
  87. 87.
    H. Elderfield, R. E. M. Rickaby, Nature 2000, 405, 305–310.PubMedCrossRefGoogle Scholar
  88. 88.
    R. E. M. Rickaby, H. Elderfield, Paleoceanography 1999, 14, 293–303.CrossRefGoogle Scholar
  89. 89.
    E. S. Lane, D. M. Semeniuk, R. F. Strzepek, J. T. Cullen, M. T. Maldonado, Marine Chem. 2009, 115, 155–162.CrossRefGoogle Scholar
  90. 90.
    F. M. M. Morel, J. Hering, Principles and Applications of Aquatic Chemistry, John Wiley & Sons, New York, 1993.Google Scholar
  91. 91.
    K. W. Bruland, Limnol. Oceanogr. 1992, 37, 1008–1017.CrossRefGoogle Scholar
  92. 92.
    M. J. Ellwood, Marine Chem. 2004, 87, 37–58.CrossRefGoogle Scholar
  93. 93.
    W. G. Sunda, S. A. Huntsman, Environ. Sci. Technol. 1998, 32, 2961–2968.CrossRefGoogle Scholar
  94. 94.
    W. G. Sunda, S. A. Huntsman, Limnol. Oceanogr. 2000, 45, 1501–1516.CrossRefGoogle Scholar
  95. 95.
    N. M. Price, F. M. M. Morel, Nature 1990, 344, 658–660.CrossRefGoogle Scholar
  96. 96.
    T. W. Lane, F. M. M. Morel, Proc. Nat. Acad. Sci. USA 2000, 97, 4627–4631.CrossRefGoogle Scholar
  97. 97.
    J. G. Lee, F. M. M. Morel, Marine Ecol. Progr. Series 1995, 127, 305–309.CrossRefGoogle Scholar
  98. 98.
    J. G. Lee, S. B. Roberts, F. M. M. Morel, Limnol. Oceanogr. 1995, 40, 1056–1063.CrossRefGoogle Scholar
  99. 99.
    U. Riebesell, D. A. Wolf–Gladrow, V. Smetacek, Nature 1993, 361, 249–251.Google Scholar
  100. 100.
    P. D. Tortell, G. R. DiTullio, D. M. Sigman, F. M. M. Morel, Marine Ecol. Progr. Series 2002, 236, 37–43.CrossRefGoogle Scholar
  101. 101.
    P. D. Tortell, G. H. Rau, F. M. M. Morel, Limnol. Oceanogr. 2000, 45, 1485–1500.CrossRefGoogle Scholar
  102. 102.
    P. D. Tortell, J. R. Reinfelder, F. M. M. Morel, Nature 1997, 390, 243–244.CrossRefGoogle Scholar
  103. 103.
    Y. Xu, L. Feng, P. D. Jeffrey, Y. G. Shi, F. M. M. Morel, Nature 2008, 452, 56–U53.PubMedCrossRefGoogle Scholar
  104. 104.
    J. T. Cullen, R. M. Sherrell, Limnol. Oceanogr. 2005, 50, 1193–1204.CrossRefGoogle Scholar
  105. 105.
    J. T. Cullen, T. W. Lane, F. M. M. Morel, R. M. Sherrell, Nature 1999, 402, 165–167.CrossRefGoogle Scholar
  106. 106.
    J. H. Martin, R. M. Gordon, S. Fitzwater, W. W. Broenkow, Deep-Sea Res. 1989, 36, 649–680.CrossRefGoogle Scholar
  107. 107.
    D. A. Hutchins, K. W. Bruland, Nature 1998, 393, 561–564.CrossRefGoogle Scholar
  108. 108.
    S. Takeda, Nature 1998, 393, 774–777.CrossRefGoogle Scholar
  109. 109.
    M. J. Ellwood, K. A. Hunter, Limnol. Oceanogr. 2000, 45, 1517–1524.CrossRefGoogle Scholar
  110. 110.
    J. T. Cullen, Z. Chase, K. H. Coale, S. Fitzwater, R. M. Sherrell, Limnol. Oceanogr. 2003, 48, 1079–1087.CrossRefGoogle Scholar
  111. 111.
    E. S. Lane, K. Jang, J. T. Cullen, M. T. Maldonado, Limnol. Oceanogr. 2008, 53, 1784–1789.CrossRefGoogle Scholar
  112. 112.
    G. M. Henderson, R. F. Anderson, J. Adkins, P. Andersson, E. A. Boyle, G. Cutter, H. de Baar, A. Eisenhauer, M. Frank, R. Francois, K. Orians, T. Gamo, C. German, W. Jenkins, J. Moffett, C. Jeandel, T. Jickells, S. Krishnaswami, D. Mackey, C. I. Measures, J. K. Moore, A. Oschlies, R. Pollard, M. R. D. van der Loeff, R. Schlitzer, M. Sharma, K. von Damm, J. Zhang, P. Masque, S. W. Grp, Chemie der Erde-Geochemistry 2007, 67, 85–131.CrossRefGoogle Scholar
  113. 113.
    Z. V. Finkel, A. S. Quigg, R. K. Chiampi, O. E. Schofield, P. G. Falkowski, Limnol. Oceanogr. 2007, 52, 1131–1138.CrossRefGoogle Scholar
  114. 114.
    T. Ho, A. Quigg, Z. V. Finkel, A. J. Milligan, K. Wyman, P. G. Falkowski, F. M. M. Morel, J. Phycol. 2003, 39, 1145–1159.CrossRefGoogle Scholar
  115. 115.
    J. T. Cullen, Limnol. Oceanogr. 2006, 51, 1369–1380.CrossRefGoogle Scholar
  116. 116.
    P. Boyd, A. J. Watson, C. S. Law, E. R. Abraham, T. Trull, R. Murdoch, D. C. E. Bakker, A. R. Bowie, K. O. Buesseler, H. Chang, M. Charette, P. L. Croot, K. Downing, R. D. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. L. Liddicoat, R. Ling, M. T. Maldonado, R. M. L. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite, J. Zeldis, Nature 2000, 407, 695–702.PubMedCrossRefGoogle Scholar
  117. 117.
    K. H. Coale, K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. Tanner, F. P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W. P. Cochlan, M. R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina, R. Kudela, Nature 1996, 383, 495–501.PubMedCrossRefGoogle Scholar
  118. 118.
    J. H. Martin, K. H. Coale, K. S. Johnson, S. E. Fitzwater, R. M. Gordon, S. J. Tanner, C. N. Hunter, V. A. Elrod, J. L. Nowicki, T. L. Coley, R. T. Barber, S. Lindley, A. J. Watson, K. V. Scoy, C. S. Law, M. L. Liddicoat, R. Ling, T. Stanton, J. Stockel, C. Collins, A. Anderson, R. Bidigare, M. Ondrusek, M. Latasa, F. J. Millero, K. Lee, W. Yao, J. Z. Zhang, G. Friedrich, C. Sakamoto, F. Chavez, K. Buck, Z. Kolber, R. Greene, P. Falkowski, S. W. Chisholm, F. Hoge, R. Swift, J. Yungel, S. Turner, P. Nightingale, A. Hatton, P. Liss, N. W. Tindale, Nature 1994, 371, 123–129.CrossRefGoogle Scholar
  119. 119.
    B. M. Löscher, J. T. M. d. Jong, H. J. W. d. Baar, Marine Chem. 1998, 62, 259–286.Google Scholar
  120. 120.
    X. Jin, N. Gruber, J. P. Dunne, J. L. Sarmiento, R. A. Armstrong, Global Biogeochem. Cycles 2006, 20.Google Scholar
  121. 121.
    P. W. Boyd, T. Jickells, C. S. Law, S. Blain, E. A. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen, H. J. W. de Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. P. J. Owens, R. Pollard, R. B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, A. J. Watson, Science 2007, 315, 612–617.PubMedCrossRefGoogle Scholar
  122. 122.
    H. J. W. de Baar, P. W. Boyd, K. H. Coale, M. R. Landry, A. Tsuda, P. Assmy, D. C. E. Bakker, Y. Bozec, R. T. Barber, M. A. Brzezinski, K. O. Buesseler, M. Boye, P. L. Croot, F. Gervais, M. Y. Gorbunov, P. J. Harrison, W. T. Hiscock, P. Laan, C. Lancelot, C. S. Law, M. Levasseur, A. Marchetti, F. J. Millero, J. Nishioka, Y. Nojiri, T. van Oijen, U. Riebesell, M. J. A. Rijkenberg, H. Saito, S. Takeda, K. R. Timmermans, M. J. W. Veldhuis, A. M. Waite, C. S. Wong, J. Geophys. Res. Oceans 2005, 110.Google Scholar
  123. 123.
    M. E. Wieser, T. B. Coplen, Pure Appl. Chem. 2011, 83, 359–396.Google Scholar
  124. 124.
    J. C. Slater, J. Chem. Phys. 1964, 41, 3199–&.Google Scholar
  125. 125.
    R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.Google Scholar
  126. 126.
    M. Berglund, M. E. Wieser, Pure Appl. Chem. 2011, 83, 397–410.Google Scholar
  127. 127.
    D. C. Adriano, Trace Elements in the Terrestrial Environment, Springer, New York, 1986.Google Scholar
  128. 128.
    J. I. Drever, The Geochemistry of Natural Waters, Prentice-Hall, New York, 1988.Google Scholar
  129. 129.
    A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, 2000.Google Scholar
  130. 130.
    B. J. Alloway, Heavy Metals in Soils, Blackie Academic and Professional, London, 1995.Google Scholar
  131. 131.
    K. Abe, Marine Chem. 2001, 74, 197–211.CrossRefGoogle Scholar
  132. 132.
    K. Abe, Marine Chem. 2002, 79, 27–36.CrossRefGoogle Scholar
  133. 133.
    K. Abe, J. Oceanogr. 2002, 58, 577–588.CrossRefGoogle Scholar
  134. 134.
    E. A. Boyle, D. F. Reid, S. S. Huested, J. Hering, Earth Planet. Sci. Lett. 1984, 69, 69–87.Google Scholar
  135. 135.
    K. W. Bruland, Earth Planet. Sci. Lett. 1980, 47, 176–198.Google Scholar
  136. 136.
    K. W. Bruland, R. P. Franks, in Trace Metals in Seawater, Eds C. S. Wong, E. A. Boyle, K. W. Bruland, J. D. Burton, E. D. Goldberg, Plenum, New York, 1983, pp. 394–414.Google Scholar
  137. 137.
    H. Y. Chen, T. H. Fang, L. S. Wen, Continental Shelf Res. 2005, 25, 297–310.CrossRefGoogle Scholar
  138. 138.
    L. Danielsson, S. Westerlund, in Trace Metals in Seawater, Ed. C. S. Wong, E. A. Boyle, K. W. Bruland, J. D. Burton, E. D. Goldberg, Plenum Press, New York, 1983.Google Scholar
  139. 139.
    L. Danielsson, B. Magnusson, S. Westerlund, Marine Chem. 1985, 17, 23–41.CrossRefGoogle Scholar
  140. 140.
    S. E. Fitzwater, K. S. Johnson, R. M. Gordon, K. H. Coale, W. O. Smith, Jr., Deep Sea Research Part II: Topical Studies in Oceanography 2000, 47, 3159–3179.CrossRefGoogle Scholar
  141. 141.
    R. D. Frew, Geophys. Res. Lett. 1995, 22, 2349–2352.CrossRefGoogle Scholar
  142. 142.
    R. D. Frew, K. A. Hunter, Nature 1992, 360, 144–146.CrossRefGoogle Scholar
  143. 143.
    R. D. Frew, K. A. Hunter, Marine Chem. 1995, 51, 223–237.CrossRefGoogle Scholar
  144. 144.
    K. A. Hunter, F. W. T. Ho, Marine Chem. 1991, 33, 279–298.CrossRefGoogle Scholar
  145. 145.
    C. J. Jones, J. W. Murray, Limnol. Oceanogr. 1984, 29, 711–720.CrossRefGoogle Scholar
  146. 146.
    G. A. Knauer, J. H. Martin, J. Marine Res. 1981, 39, 65–76.Google Scholar
  147. 147.
    J. H. Martin, R. M. Gordon, S. E. Fitzwater, Nature 1990, 345, 156–158.CrossRefGoogle Scholar
  148. 148.
    J. H. Martin, S. E. Fitzwater, R. M. Gordon, C. N. Hunter, S. J. Tanner, Deep-Sea Research Part II-Topical Studies in Oceanography 1993, 40, 115–134.CrossRefGoogle Scholar
  149. 149.
    N. H. Morley, P. J. Statham, J. D. Burton, Deep Sea Res. I 1993, 40, 1043–1062.Google Scholar
  150. 150.
    R. F. Nolting, H. J. W. d. Baar, Marine Chem. 1994, 45, 225–242.Google Scholar
  151. 151.
    R. F. Nolting, H. J. W. D. Baar, A. J. V. Bennekom, A. Masson, Marine Chem. 1991, 35, 219–243.CrossRefGoogle Scholar
  152. 152.
    M. J. Orren, P. M. S. Monteiro, in Antarctic Nutrient Cycles and Food Webs, Eds W. R. Siegfried, P. R. Condy, R. M. Laws, Springer, New York, 1985, pp. 30–37.Google Scholar
  153. 153.
    S. Pai, H. Chen, Marine Chem. 1994, 47, 81–91.CrossRefGoogle Scholar
  154. 154.
    P. M. Saager, H. J. W. Debaar, R. J. Howland, Deep-Sea Research Part a-Oceanogr. Res. Papers 1992, 39, 9–35.Google Scholar
  155. 155.
    P. M. Saager, H. J. W. de Baar, J. T. M. de Jong, R. F. Nolting, J. Schijf, Marine Chem. 1997, 57, 195–216.CrossRefGoogle Scholar
  156. 156.
    C. M. Sakamoto-Arnold, A. K. Hanson, D. L. Huizenga, D. R. Kester, J. Marine Res. 1987, 45, 201–230.CrossRefGoogle Scholar
  157. 157.
    S. Westerlund, P. Öhman, Geochim. Cosmochim. Acta 1991, 55, 2127–2146.CrossRefGoogle Scholar
  158. 158.
    P. A. Yeats, Sci. Total Envir. 1988, 72, 131–149.CrossRefGoogle Scholar
  159. 159.
    P. A. Yeats, J. A. Campbell, Marine Chem. 1983, 12, 43–58.CrossRefGoogle Scholar
  160. 160.
    U. S. Geological Survey, in Historical statistics for mineral and material commodities in the United States, Eds T. D. Kelly, G. R. Matos, 2012, Vol. 140, pp. 36–37.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  2. 2.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations