Cadmium in Marine Phytoplankton

Chapter
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)

Abstract

The distribution of cadmium in the ocean is very similar to that of major nutrients suggesting that it may be taken up by marine phytoplankton at the surface and remineralized at depth. This interpretation is supported by recent data on Cd isotope distribution showing an increase in the 112Cd/110Cd ratio in Cd-depleted surface water. While at high concentrations, Cd is toxic to phytoplankton as it is to many organisms, at relatively low concentrations, Cd can enhance the growth of a number of phytoplankton species under zinc limitation. Kinetic studies suggest that Cd is taken up through either the Mn or the Zn transport system, depending on the ambient concentrations of these metals. In addition to inorganic Cd complexes (including the free Cd2+ ion), Cd complexes with relatively weak organic ligands may also be bioavailable. Cd is very effective to induce the production of phytochelatin and other thiols in phytoplankton, probably as a detoxification mechanism as well as a control of Cd homeostasis in cells. The only known biological function of Cd is to serve as a metal cofactor in Cd-carbonic anhydrase (CDCA) in diatoms. The expression of CDCA is regulated by Cd and Zn availabilities and by the pCO2/pH of the ambient seawater in cultured diatoms and natural assemblages. The conformation of CDCA active site is similar to that of β-CA and both Zn and Cd can be used as its metal cofactor and exchanged for each other. Understanding of the biological role of Cd in marine phytoplankton provides insights into the biogeochemical cycling of this element in the ocean.

Keywords

cadmium carbonic anhydrase growth metal replacement phytochelatin phytoplankton uptake 

Abbreviations

CA

carbonic anhydrase

Cd′

inorganic Cd, including Cd complexes with the major inorganic ligands of seawater and Cd2+

CDCA

cadmium carbonic anhydrase

Cd-GS2

(gluathionato)-Cd complex

EDTA

ethylenediamine-N,N,N’,N’-tetraacetic acid

GSH

glutathione

RuBisCO

ribulose-1,5-bisphosphate carboxylase/oxygenase

Zn′

inorganic Zn, including Zn complexes with the major inorganic ligands of seawater and Zn2+

References

  1. 1.
    C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Science 1998, 281, 237–240.PubMedCrossRefGoogle Scholar
  2. 2.
    F. M. M. Morel, Geobiology 2008, 6, 318–324.PubMedCrossRefGoogle Scholar
  3. 3.
    M. Kasuya, Water Sci. Technol. 2000, 42, 147–154.Google Scholar
  4. 4.
    T. Y. T. Ng, W. X. Wang, Environ. Toxicol. Chem. 2005, 24, 2299–2305.PubMedCrossRefGoogle Scholar
  5. 5.
    K. Chong, W. X. Wang, Environ. Toxicol. Chem. 2000, 19, 1660–1667.Google Scholar
  6. 6.
    E. A. Boyle, F. Sclater, J. M. Edmond, Nature 1976, 263, 42–44.CrossRefGoogle Scholar
  7. 7.
    K. W. Bruland, Earth Planet. Sci. Lett. 1980, 47, 176–198.Google Scholar
  8. 8.
    J. H. Martin, S. E. Fitzwater, R. M. Gordon, C. N. Hunter, S. J. Tanner, Deep-Sea Res. Part II 1993, 40, 115–134.CrossRefGoogle Scholar
  9. 9.
    T. W. Lane, F. M. M. Morel, Proc. Natl. Acad. Sci. USA 2000, 97, 4627–4631.CrossRefGoogle Scholar
  10. 10.
    T. W. Lane, M. A. Saito, G. N. George, I. J. Pickering, R. C. Prince, F. M. M. Morel, Nature 2005, 435, 42–42.PubMedCrossRefGoogle Scholar
  11. 11.
    K. W. Bruland, G. A. Knauer, J. H. Martin, Limnol. Oceanogr. 1978, 23, 618–625.CrossRefGoogle Scholar
  12. 12.
    K. W. Bruland, K. J. Orians, J. P. Cowen, Geochim. Cosmochim. Acta 1994, 58, 3171–3182.CrossRefGoogle Scholar
  13. 13.
    L. G. Danielsson, Mar. Chem. 1980, 8, 199–215.CrossRefGoogle Scholar
  14. 14.
    M. J. Ellwood, Mar. Chem. 2004, 87, 37–58.CrossRefGoogle Scholar
  15. 15.
    J. H. Martin, R. M. Gordon, S. Fitzwater, W. W. Broenkow, Deep-Sea Res., Part A 1989, 36, 649.Google Scholar
  16. 16.
    K. W. Bruland, Limnol. Oceanogr. 1992, 37, 1008–1017.CrossRefGoogle Scholar
  17. 17.
    R. H. Byrne, L. R. Kump, K. J. Cantrell, Mar. Chem. 1988, 25, 163–181.CrossRefGoogle Scholar
  18. 18.
    C. M. Sakamoto-Arnold, A. K. Hanson, D. L. Huizenga, D. R. Kester, J. Mar. Res. 1987, 45, 201–230.Google Scholar
  19. 19.
    P. B. Kozelka, K. W. Bruland, Mar. Chem. 1998, 60, 267–282.CrossRefGoogle Scholar
  20. 20.
    Y. Xu, D. Shi, L. Aristilde, F. M. M. Morel, Limnol. Oceanogr. 2012, 57, 293–304.Google Scholar
  21. 21.
    N. M. Price, F. M. M. Morel, Nature 1990, 344, 658–660.CrossRefGoogle Scholar
  22. 22.
    K. W. Bruland, Limnol. Oceanogr. 1989, 34, 269–285.CrossRefGoogle Scholar
  23. 23.
    M. C. Lohan, P. J. Statham, D. W. Crawford, Deep-Sea Res. Part II 2002, 49, 5793–5808.CrossRefGoogle Scholar
  24. 24.
    L. E. Brand, W. G. Sunda, R. R. L. Guillard, Limnol. Oceanogr. 1983, 28, 1182–1198.CrossRefGoogle Scholar
  25. 25.
    W. G. Sunda, S. A. Huntsman, Limnol. Oceanogr. 1992, 37, 25–40.CrossRefGoogle Scholar
  26. 26.
    M. A. Anderson, F. M. M. Morel, R. R. L. Guillard, Nature 1978, 276, 70–71.CrossRefGoogle Scholar
  27. 27.
    K. H. Coale, Limnol. Oceanogr. 1991, 36, 1851–1864.CrossRefGoogle Scholar
  28. 28.
    D. W. Crawford, M. S. Lipsen, D. A. Purdie, M. C. Lohan, P. J. Statham, F. A. Whitney, J. N. Putland, W. K. Johnson, N. Sutherland, T. D. Peterson, P. J. Harrison, C. S. Wong, Limnol. Oceanogr. 2003, 48, 1583–1600.CrossRefGoogle Scholar
  29. 29.
    V. M. Franck, K. W. Bruland, D. A. Hutchins, M. A. Brzezinski, Mar. Ecol.: Prog. Ser. 2003, 252, 15–33.Google Scholar
  30. 30.
    W. Abouchami, S. J. G. Galer, H. J. W. de Baar, A. C. Alderkamp, R. Middag, P. Laan, H. Feldmann, M. O. Andreae, Earth Planet. Sci. Lett. 2011, 305, 83–91.Google Scholar
  31. 31.
    F. Lacan, R. Francois, Y. C. Ji, R. M. Sherrell, Geochim. Cosmochim. Acta 2006, 70, 5104–5118.CrossRefGoogle Scholar
  32. 32.
    S. Ripperger, M. Rehkamper, D. Porcelli, A. N. Halliday, Earth Planet. Sci. Lett. 2007, 261, 670–684.Google Scholar
  33. 33.
    Z. C. Xue, M. Rehkamper, M. Schonbachler, P. J. Statham, B. J. Coles, Anal. Bioanal. Chem. 2012, 402, 883–893.PubMedCrossRefGoogle Scholar
  34. 34.
    A. D. Schmitt, S. J. G. Galer, W. Abouchami, Earth Planet. Sci. Lett. 2009, 277, 262–272.Google Scholar
  35. 35.
    D. M. Sigman, M. A. Altabet, D. C. McCorkle, R. Francois, G. Fischer, J. Geophys. Res., [Oceans] 2000, 105, 19599–19614.Google Scholar
  36. 36.
    J. G. Lee, F. M. M. Morel, Mar. Ecol. Prog. Ser. 1995, 127, 305–309.CrossRefGoogle Scholar
  37. 37.
    Y. Xu, D. Tang, Y. Shaked, F. M. M. Morel, Limnol. Oceanogr. 2007, 52, 2294–2305.CrossRefGoogle Scholar
  38. 38.
    J. G. Lee, S. B. Roberts, F. M. M. Morel, Limnol. Oceanogr. 1995, 40, 1056–1063.CrossRefGoogle Scholar
  39. 39.
    F. M. M. Morel, J. R. Reinfelder, S. B. Roberts, C. P. Chamberlain, J. G. Lee, D. Yee, Nature 1994, 369, 740–742.CrossRefGoogle Scholar
  40. 40.
    H. Park, B. Song, F. M. M. Morel, Environ. Microbiol. 2007, 9, 403–413.PubMedCrossRefGoogle Scholar
  41. 41.
    L. E. Brand, W. G. Sunda, R. R. L. Guillard, J. Exp. Mar. Biol. Ecol. 1986, 96, 225–250.CrossRefGoogle Scholar
  42. 42.
    G. S. Braek, D. Malnes, A. Jensen, J. Exp. Mar. Biol. Ecol. 1980, 42, 39–54.CrossRefGoogle Scholar
  43. 43.
    M.-J. Wang, W.-X. Wang, Aquat. Toxicol. 2009, 95, 99–107.PubMedCrossRefGoogle Scholar
  44. 44.
    C. D. Payne, N. M. Price, J. Phycol. 1999, 35, 293–302.CrossRefGoogle Scholar
  45. 45.
    P. D. Tortell, N. M. Price, Mar. Ecol. Prog. Ser. 1996, 138, 245–254.CrossRefGoogle Scholar
  46. 46.
    A. J. Miao, W. X. Wang, P. Juneau, Environ. Toxicol. Chem. 2005, 24, 2603–2611.PubMedCrossRefGoogle Scholar
  47. 47.
    W. G. Sunda, S. A. Huntsman, Sci. Total Environ. 1998, 219, 165–181.CrossRefGoogle Scholar
  48. 48.
    W. G. Sunda, S. A. Huntsman, Limnol. Oceanogr. 1996, 41, 373–387.CrossRefGoogle Scholar
  49. 49.
    J. R. Reinfelder, R. E. Jablonka, M. Cheney, Environ. Toxicol. Chem. 2000, 19, 448–453.Google Scholar
  50. 50.
    G. I. Harrison, F. M. M. Morel, J. Phycol. 1983, 19, 495–507.CrossRefGoogle Scholar
  51. 51.
    P. L. Foster, F. M. M. Morel, Limnol. Oceanogr. 1982, 27, 745–752.CrossRefGoogle Scholar
  52. 52.
    E. Pinto, T. C. S. Sigaud-Kutner, M. A. S. Leitao, O. K. Okamoto, D. Morse, P. Colepicolo, J. Phycol. 2003, 39, 1008–1018.CrossRefGoogle Scholar
  53. 53.
    M. Bertrand, B. Schoefs, P. Siffel, K. Rohacek, I. Molnar, FEBS Letters 2001, 508, 153–156.PubMedCrossRefGoogle Scholar
  54. 54.
    G. H. Wikfors, A. Neeman, P. J. Jackson, Mar. Ecol. Prog. Ser. 1991, 79, 163–170.CrossRefGoogle Scholar
  55. 55.
    R. W. Olafson, W. D. McCubbin, C. M. Kay, Biochem. J. 1988, 251, 691–699.PubMedGoogle Scholar
  56. 56.
    T. Brembu, M. Jorstad, P. Winge, K. C. Valle, A. M. Bones, Environ. Sci. Technol. 2011, 45, 7640–7647.PubMedCrossRefGoogle Scholar
  57. 57.
    J. G. Lee, B. A. Ahner, F. M. M. Morel, Environ. Sci. Technol. 1996, 30, 1814–1821.CrossRefGoogle Scholar
  58. 58.
    Y. Nassiri, J. L. Mansot, J. Wery, T. Ginsburger-Vogel, J. C. Amiard, Arch. Environ. Contam. Toxicol. 1997, 33, 147–155.PubMedCrossRefGoogle Scholar
  59. 59.
    W. G. Sunda, S. A. Huntsman, Environ. Sci. Technol. 1998, 32, 2961–2968.CrossRefGoogle Scholar
  60. 60.
    W. G. Sunda, S. A. Huntsman, Limnol. Oceanogr. 2000, 45, 1501–1516.CrossRefGoogle Scholar
  61. 61.
    J. T. Cullen, T. W. Lane, F. M. M. Morel, R. M. Sherrell, Nature 1999, 402, 165–167.CrossRefGoogle Scholar
  62. 62.
    J. T. Cullen, R. M. Sherrell, Limnol. Oceanogr. 2005, 50, 1193–1204.CrossRefGoogle Scholar
  63. 63.
    J. T. Cullen, Z. Chase, K. H. Coale, S. E. Fitzwater, R. M. Sherrell, Limnol. Oceanogr. 2003, 48, 1079–1087.CrossRefGoogle Scholar
  64. 64.
    E. S. Lane, D. M. Semeniuk, R. F. Strzepek, J. T. Cullen, M. T. Maldonado, Mar. Chem. 2009, 115, 155–162.CrossRefGoogle Scholar
  65. 65.
    E. S. Lane, K. Jang, J. T. Cullen, M. T. Maldonado, Limnol. Oceanogr. 2008, 53, 1784–1789.CrossRefGoogle Scholar
  66. 66.
    W. X. Wang, L. D. Guo, Mar. Ecol. Prog. Ser. 2000, 202, 41–49.CrossRefGoogle Scholar
  67. 67.
    J. T. Phinney, K. W. Bruland, Environ. Sci. Technol. 1994, 28, 1781–1790.PubMedCrossRefGoogle Scholar
  68. 68.
    L. Aristilde, Y. Xu, F. M. M. Morel, Environ. Sci. Technol. 2012, 46, 5438–5445.CrossRefGoogle Scholar
  69. 69.
    T. Y. Ho, A. Quigg, Z. V. Finkel, A. J. Milligan, K. Wyman, P. G. Falkowski, F. M. M. Morel, J. Phycol. 2003, 39, 1145–1159.CrossRefGoogle Scholar
  70. 70.
    B. A. Ahner, F. M. M. Morel, Limnol. Oceanogr. 1995, 40, 658–665.CrossRefGoogle Scholar
  71. 71.
    B. A. Ahner, N. M. Price, F. M. M. Morel, Proc. Natl. Acad. Sci. USA 1994, 91, 8433–8436.CrossRefGoogle Scholar
  72. 72.
    B. A. Ahner, F. M. M. Morel, in Prog. Phycol. Res., Eds F. E. Round, D. J. Chapman, Biopress Ltd., Bristol, UK, 1999, Vol. 13, pp. 1–31.Google Scholar
  73. 73.
    S. K. Kawakami, M. Gledhill, E. P. Achterberg, J. Phycol. 2006, 42, 975–989.CrossRefGoogle Scholar
  74. 74.
    B. A. Ahner, J. G. Lee, N. M. Price, F. M. M. Morel, Deep-Sea Res. Part II 1998, 45, 1779–1796.Google Scholar
  75. 75.
    B. A. Ahner, S. Kong, F. M. M. Morel, Limnol. Oceanogr. 1995, 40, 649–657.CrossRefGoogle Scholar
  76. 76.
    B. A. Ahner, L. P. Wei, J. R. Oleson, N. Ogura, Mar. Ecol. Progr. Ser. 2002, 232, 93–103.CrossRefGoogle Scholar
  77. 77.
    M. J. Wang, W. X. Wang, Environ. Sci. Technol. 2008, 42, 8603–8608.PubMedCrossRefGoogle Scholar
  78. 78.
    E. Morelli, G. Scarano, Chem. Speciat. Bioavail. 1995, 7, 43–47.Google Scholar
  79. 79.
    E. Morelli, L. Fantozzi, Bull. Environ. Contam. Toxicol. 2008, 81, 236–241.PubMedCrossRefGoogle Scholar
  80. 80.
    E. Torres, A. Cid, P. Fidalgo, C. Herrero, J. Abalde, Aquat. Toxicol. 1997, 39, 231–246.CrossRefGoogle Scholar
  81. 81.
    J. W. Rijstenbil, J. A. Wijnholds, Mar. Bio. 1996, 127, 45–54.CrossRefGoogle Scholar
  82. 82.
    M. J. Wang, W. X. Wang, Aquat. Toxicol. 2009, 95, 99–107.PubMedCrossRefGoogle Scholar
  83. 83.
    M. J. Wang, W. X. Wang, Aquat. Toxicol. 2011, 101, 377–386.PubMedCrossRefGoogle Scholar
  84. 84.
    E. Morelli, G. Scarano, Mar. Environ. Res. 2001, 52, 383–395.PubMedCrossRefGoogle Scholar
  85. 85.
    L. P. Wei, B. A. Ahner, Limnol. Oceanogr. 2005, 50, 13–22.CrossRefGoogle Scholar
  86. 86.
    S. Kawakami, M. Gledhill, E. Achterberg, Biometals 2006, 19, 51–60.PubMedCrossRefGoogle Scholar
  87. 87.
    L. P. Wei, J. R. Donat, G. Fones, B. A. Ahner, Environ. Sci. Technol. 2003, 37, 3609–3618.PubMedCrossRefGoogle Scholar
  88. 88.
    T. Gupton-Campolongo, L. M. Damasceno, A. G. Hay, B. A. Ahner, J. Phycol., in press.Google Scholar
  89. 89.
    Y. Xu, L. Feng, P. D. Jeffrey, Y. G. Shi, F. M. M. Morel, Nature 2008, 452, 56–U53.PubMedCrossRefGoogle Scholar
  90. 90.
    C. L. Dupont, B. A. Ahner, Limnol. Oceanogr. 2005, 50, 508–515.CrossRefGoogle Scholar
  91. 91.
    C. L. Dupont, T. J. Goepfert, P. Lo, L. P. Wei, B. A. Ahnerz, Limnol. Oceanogr. 2004, 49, 991–996.CrossRefGoogle Scholar
  92. 92.
    F. M. M. Morel, E. H. Cox, A. M. L. Kraepiel, T. W. Lane, A. J. Milligan, I. Schaperdoth, J. R. Reinfelder, P. D. Tortell, Funct. Plant Biol. 2002, 29, 301–308.Google Scholar
  93. 93.
    H. Park, P. J. McGinn, F. M. M. Morel, Aquat. Microb. Ecol. 2008, 51, 183–193.CrossRefGoogle Scholar
  94. 94.
    P. J. McGinn, F. M. M. Morel, Physiol. Plant. 2008, 133, 78–91.PubMedCrossRefGoogle Scholar
  95. 95.
    V. Alterio, E. Langella, F. Viparelli, D. Vullo, G. Ascione, N. A. Dathan, F. M. M. Morel, C. T. Supuran, G. De Simone, S. Maria Monti, Biochimie, in press.Google Scholar
  96. 96.
    F. Viparelli, S. M. Monti, G. De Simone, A. Innocenti, A. Scozzafava, Y. Xu, F. M. M. Morel, C. T. Supuran, Bioorg. Med. Chem. Lett. 2010, 20, 4745–4748.PubMedCrossRefGoogle Scholar
  97. 97.
    Y. Xu, C. T. Supuran, F. M. M. Morel, in Handbook of Metalloproteins, Ed A. Messerschmidt, John Wiley & Sons Ltd., Chichester, UK, 2010, Vol. 4 & 5, pp. 717–721.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Department of Molecular and Cellular Physiology, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations