Cadmium and Cancer

  • Andrea HartwigEmail author
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)


Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.


cadmium carcinogenicity DNA damage response genomic instability genotoxicity redox regulation signal transduction zinc 

Abbreviations and Definitions


base excision repair


body weight


cyclic adenosine 3’,5’-monophosphate


European Food Safety Authority


Food and Agriculture Organization of the United Nations


formamidopyrimidine DNA glycosylase


global genome nucleotide excision repair




International Agency for Research on Cancer




c-jun-N-terminal kinase

MAK Commission

(= maximale Arbeitsplatzkonzentration) German Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area


mitogen activated protein kinases


mismatch repair




nucleotide excision repair


nuclear factor κB


NF-E2-related factor


8-oxoguanine DNA glycosylase 1


poly(ADP-ribose) polymerase


provisional tolerable weekly intake


reactive oxygen species


transcription-coupled nucleotide excision repair


tolerable weekly intake


ultraviolet C light (the full range is 100–280 nm; but usually in biological experiments 254 nm is applied)


World Health Organization


xeroderma pigmentosum


xeroderma pigmentosum group A protein




8-oxo-dG 5’-triphosphate pyrophosphohydrolase



The author would like to thank Dr. Gunnar Jahnke for critical reading of the manuscript. Research conducted in the author’s laboratory was supported by the Deutsche Forschungsgemeinschaft and by BWPLUS.


  1. 1.
    G. F. Nordberg, Toxicol. Appl. Pharmacol. 2009, 238, 192–200.PubMedCrossRefGoogle Scholar
  2. 2.
    EFSA, The EFSA Journal 2009, 980, 1–139.Google Scholar
  3. 3.
    M. Sughis, J. Penders, V. Haufroid, B. Nemery, T. S. Nawrot, Environmental Health: A Global Access Science Source 2011, 10, 104.CrossRefGoogle Scholar
  4. 4.
    IARC, Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry, 1993.Google Scholar
  5. 5.
    IARC, Supplement: Cadmium and Cadmium compounds, 1997.Google Scholar
  6. 6.
    IARC, A Review of Human Carcinogens; Part C: Arsenic, Metals, Fibres, and Dusts, 2012, pp. 121–145.Google Scholar
  7. 7.
    Cadmium and Its Compounds (in the form of inhable dusts/aerosols), Vol. 22, The MAK Collection for Occupational Health and Safety, Ed H. Greim, Wiley-VCH, Weinheim, Germany, 2006.Google Scholar
  8. 8.
    L. Stayner, R. Smith, T. Schnorr, R. Lemen, M. Thun, Ann. Epidemiol. 1993, 3, 114–116.PubMedCrossRefGoogle Scholar
  9. 9.
    T. Sorahan, N. A. Esmen, Occupat. Environ. Med. 2004, 61, 108–116.CrossRefGoogle Scholar
  10. 10.
    T. Sorahan, Occupat. Med. 2009, 59, 264–266.CrossRefGoogle Scholar
  11. 11.
    L. Jarup, T. Bellander, C. Hogstedt, G. Spang, Occupat. Environ.M. 1998, 55, 755–759.Google Scholar
  12. 12.
    T. Nawrot, M. Plusquin, J. Hogervorst, H. A. Roels, H. Celis, L. Thijs, J. Vangronsveld, E. Van Hecke, J. A. Staessen, The Lancet Oncology 2006, 7, 119–126.PubMedCrossRefGoogle Scholar
  13. 13.
    B. Pesch, J. Haerting, U. Ranft, A. Klimpel, B. Oelschlägel, W. Schill, Int. J. Epidemiol. 2000, 29, 1014–1024.PubMedCrossRefGoogle Scholar
  14. 14.
    J. Hu, Y. Mao, K. White, Occupat. Med. 2002, 52, 157–164.CrossRefGoogle Scholar
  15. 15.
    J. Siemiatycki, Risk Factors for Cancer in the Workplace, CRC Press, Boca Raton, Florida, 1991.Google Scholar
  16. 16.
    E. Kellen, M. P. Zeegers, E. D. Hond, F. Buntinx, Cancer Detec. Prev. 2007, 31, 77–82.Google Scholar
  17. 17.
    J. A. McElroy, M. M. Shafer, A. Trentham-Dietz, J. M. Hampton, P. A. Newcomb, J. Natl. Cancer Inst. 2006, 98, 869–873.CrossRefGoogle Scholar
  18. 18.
    A. Akesson, B. Julin, A. Wolk, Cancer Res. 2008, 68, 6435–6441.PubMedCrossRefGoogle Scholar
  19. 19.
    S. Takenaka, H. Oldiges, H. Konig, D. Hochrainer, G. Oberdörster, J. Natl. Cancer Inst. 1983, 70, 367–373.Google Scholar
  20. 20.
    U. Glaser, D. Hochrainer, F. J. Otto, H. Oldiges, Toxicol. Environ. Chem. 1990, 27, 153–162.CrossRefGoogle Scholar
  21. 21.
    U. Heinrich, L. Peters, H. Ernst, S. Rittinghausen, C. Dasenbrock, H. König, Exp. Pathol. 1989, 37, 253–258.PubMedCrossRefGoogle Scholar
  22. 22.
    J. Huff, R. M. Lunn, M. P. Waalkes, L. Tomatis, P. F. Infante, Int. J. Occupat. Environ. Health 2007, 13, 202–212.Google Scholar
  23. 23.
    D. Beyersmann, A. Hartwig, Arch. Toxicol. 2008, 82, 493–512.PubMedCrossRefGoogle Scholar
  24. 24.
    M. Filipic, T. Fatur, M. Vudrag, Hum. Exp. Toxicol. 2006, 25, 67–77.PubMedCrossRefGoogle Scholar
  25. 25.
    M. Waisberg, P. Joseph, B. Hale, D. Beyersmann, Toxicology 2003, 192, 95–117.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Filipic, T. K. Hei, Mutat. Res. 2004, 546, 81–91.PubMedCrossRefGoogle Scholar
  27. 27.
    J. T. Tapisso, C. C. Marques, L. Mathias Mda, G. Ramalhinho Mda, Mutat. Res. 2009, 678, 59–64.PubMedCrossRefGoogle Scholar
  28. 28.
    M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Chem. Biol. Interact. 2006, 160, 1–40.PubMedCrossRefGoogle Scholar
  29. 29.
    J. Cadet, T. Douki, J. L. Ravanat, Free Radical Biol. Med. 2010, 49, 9–21.Google Scholar
  30. 30.
    T. B. Kryston, A. B. Georgiev, P. Pissis, A. G. Georgakilas, Mutat. Res. 2011, 711, 193–201.PubMedCrossRefGoogle Scholar
  31. 31.
    J. Liu, W. Qu, M. B. Kadiiska, Toxicol. Appl. Pharmacol. 2009, 238, 209–214.PubMedCrossRefGoogle Scholar
  32. 32.
    H. Dally, A. Hartwig, Carcinogenesis 1997, 18, 1021–1026.PubMedCrossRefGoogle Scholar
  33. 33.
    T. Schwerdtle, F. Ebert, C. Thuy, C. Richter, L. H. Mullenders, A. Hartwig, Chem. Res. Toxicol. 2010, 23, 432–442.PubMedCrossRefGoogle Scholar
  34. 34.
    T. Ochi, M. Ohsawa, Mutat. Res. 1985, 143, 137–142.PubMedCrossRefGoogle Scholar
  35. 35.
    S. J. Stohs, D. Bagchi, E. Hassoun, M. Bagchi, J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 77–88.PubMedCrossRefGoogle Scholar
  36. 36.
    M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Chem. Biol. Interact. 2006, 160, 1–40.PubMedCrossRefGoogle Scholar
  37. 37.
    F. Thevenod, Toxicol. Appl. Pharmacol. 2009, 238, 221–239.PubMedCrossRefGoogle Scholar
  38. 38.
    M. Genestra, Cell Signal. 2007, 19, 1807–1819.PubMedCrossRefGoogle Scholar
  39. 39.
    R. Hakem, EMBO J. 2008, 27, 589–605.PubMedCrossRefGoogle Scholar
  40. 40.
    U. Camenisch, H. Naegeli, EXS 2009, 99, 111–150.PubMedGoogle Scholar
  41. 41.
    M. Christmann, M. T. Tomicic, W. P. Roos, B. Kaina, Toxicology 2003, 193, 3–34.PubMedCrossRefGoogle Scholar
  42. 42.
    M. Fousteri, L. H. Mullenders, Cell Res. 2008, 18, 73–84.PubMedCrossRefGoogle Scholar
  43. 43.
    A. Hartwig, Environ. Health Perspect. 1994, 102 Suppl 3, 45–50.Google Scholar
  44. 44.
    C. Giaginis, E. Gatzidou, S. Theocharis, Toxicol. Appl. Pharmacol. 2006, 213, 282–290.PubMedCrossRefGoogle Scholar
  45. 45.
    A. Hartwig, Biometals 2010, 23, 951–960.PubMedCrossRefGoogle Scholar
  46. 46.
    P. Koedrith, Y. R. Seo, Int. J. Mol. Sci. 2011, 12, 9576–9595.PubMedCrossRefGoogle Scholar
  47. 47.
    M. Filipic, Mutat. Res. 2012, 733, 69–77.PubMedCrossRefGoogle Scholar
  48. 48.
    J. de Boer, J. H. Hoeijmakers, Carcinogenesis 2000, 21, 453–460.PubMedCrossRefGoogle Scholar
  49. 49.
    A. Hartmann, G. Speit, Environ. Mol. Mutagen. 1996, 27, 98–104.PubMedCrossRefGoogle Scholar
  50. 50.
    R. D. Snyder, G. F. Davis, P. J. Lachmann, Biol. Trace El. Res. 1989, 21, 389–398.CrossRefGoogle Scholar
  51. 51.
    J. P. Mackay, M. Crossley, Trends Biochem. Sci. 1998, 23, 1–4.Google Scholar
  52. 52.
    A. Hartwig, Antioxid. Redox Signal. 2001, 3, 625–634.CrossRefGoogle Scholar
  53. 53.
    A. Witkiewicz-Kucharczyk, W. Bal, Toxicol. Lett. 2006, 162, 29–42.PubMedCrossRefGoogle Scholar
  54. 54.
    M. Asmuss, L. H. Mullenders, A. Hartwig, Toxicol. Lett. 2000, 112–113, 227–231.PubMedCrossRefGoogle Scholar
  55. 55.
    M. Hartmann, A. Hartwig, Carcinogenesis 1998, 19, 617–621.PubMedCrossRefGoogle Scholar
  56. 56.
    G. W. Buchko, N. J. Hess, M. A. Kennedy, Carcinogenesis 2000, 21, 1051–1057.PubMedCrossRefGoogle Scholar
  57. 57.
    E. Kopera, T. Schwerdtle, A. Hartwig, W. Bal, Chem. Res. Toxicol. 2004, 17, 1452–1458.PubMedCrossRefGoogle Scholar
  58. 58.
    T. Fatur, T. T. Lah, M. Filipic, Mutat. Res. 2003, 529, 109–116.PubMedCrossRefGoogle Scholar
  59. 59.
    K. Bialkowski, K. S. Kasprzak, Nucleic Acids Res. 1998, 26, 3194–3201.PubMedCrossRefGoogle Scholar
  60. 60.
    D. O. Zharkov, T. A. Rosenquist, DNA Repair (Amst) 2002, 1, 661–670.Google Scholar
  61. 61.
    R. J. Potts, R. D. Watkin, B. A. Hart, Toxicology 2003, 184, 189–202.PubMedCrossRefGoogle Scholar
  62. 62.
    I. Hamann, C. König, C. Richter, G. Jahnke, A. Hartwig, Mutat. Res. 2011, May 13 Epub ahead of print; Mutat. Res. 2012, 736, 56–63.Google Scholar
  63. 63.
    A. Bravard, A. Campalans, M. Vacher, B. Gouget, C. Levalois, S. Chevillard, J. P. Radicella, Mutat. Res. 2010, 685, 61–69.PubMedCrossRefGoogle Scholar
  64. 64.
    C. K. Youn, S. H. Kim, D. Y. Lee, S. H. Song, I. Y. Chang, J. W. Hyun, M. H. Chung, H. J. You, J. Biol. Chem. 2005, 280, 25185–25195.Google Scholar
  65. 65.
    R. K. Kothinti, A. B. Blodgett, D. H. Petering, N. M. Tabatabai, Toxicol. Appl. Pharmacol. 2010, 244, 254–262.PubMedCrossRefGoogle Scholar
  66. 66.
    K. Bialkowski, A. Bialkowska, K. S. Kasprzak, Carcinogenesis 1999, 20, 1621–1624.PubMedCrossRefGoogle Scholar
  67. 67.
    S. Beneke, A. Bürkle, Nucleic Acids Res. 2007, 35, 7456–7465.PubMedCrossRefGoogle Scholar
  68. 68.
    S. Petrucco, Nucleic Acids Res. 2003, 31, 6689–6699.PubMedCrossRefGoogle Scholar
  69. 69.
    A. Hartwig, M. Asmuss, I. Ehleben, U. Herzer, D. Kostelac, A. Pelzer, T. Schwerdtle, A. Bürkle, Environ. Health Perspect. 2002, 110 Suppl 5, 797–799.Google Scholar
  70. 70.
    V. O’Brien, R. Brown, Carcinogenesis 2006, 27, 682–692.PubMedCrossRefGoogle Scholar
  71. 71.
    P. Hsieh, K. Yamane, Mech. Ageing Dev. 2008, 129, 391–407.CrossRefGoogle Scholar
  72. 72.
    Y. H. Jin, A. B. Clark, R. J. Slebos, H. Al-Refai, J. A. Taylor, T. A. Kunkel, M. A. Resnick, D. A. Gordenin, Nat. Genet. 2003, 34, 326–329.PubMedCrossRefGoogle Scholar
  73. 73.
    A. Lutzen, S. E. Liberti, L. J. Rasmussen, Biochem. Biophys. Res. Commun. 2004, 321, 21–25.PubMedCrossRefGoogle Scholar
  74. 74.
    M. Wieland, M. K. Levin, K. S. Hingorani, F. N. Biro, M. M. Hingorani, Biochemistry 2009, 48, 9492–9502.PubMedCrossRefGoogle Scholar
  75. 75.
    P. Hainaut, M. Hollstein, Adv. Cancer Res. 2000, 77, 81–137.CrossRefGoogle Scholar
  76. 76.
    F. Cao, T. Zhou, D. Simpson, Y. Zhou, J. Boyer, B. Chen, T. Jin, M. Cordeiro-Stone, W. Kaufmann, Toxicol. Appl. Pharmacol. 2007, 218, 174–185.PubMedCrossRefGoogle Scholar
  77. 77.
    S. Chatterjee, S. Kundu, S. Sengupta, A. Bhattacharyya, Mutat. Res. 2009, 663, 22–31.PubMedCrossRefGoogle Scholar
  78. 78.
    X. Yu, J. S. Sidhu, S. Hong, J. F. Robinson, R. A. Ponce, E. M. Faustman, Toxicol. Sci. 2011, 120, 403–412.PubMedCrossRefGoogle Scholar
  79. 79.
    C. Meplan, K. Mann, P. Hainaut, J. Biol. Chem. 1999, 274, 31663–31670.Google Scholar
  80. 80.
    B. A. Hart, R. J. Potts, R. D. Watkin, Toxicology 2001, 160, 65–70.PubMedCrossRefGoogle Scholar
  81. 81.
    P. Joseph, Toxicol. Appl. Pharmacol. 2009, 238, 272–279.PubMedCrossRefGoogle Scholar
  82. 82.
    W. Qu, H. Ke, J. Pi, D. Broderick, J. E. French, M. M. Webber, M. P. Waalkes, Environ. Health Perspect. 2007, 115, 1094–1100.CrossRefGoogle Scholar
  83. 83.
    F. Thevenod, Biometals 2010, 23, 857–875.PubMedCrossRefGoogle Scholar
  84. 84.
    M. Costa, J. D. Heck, S. H. Robison, Cancer Res. 1982, 42, 2757–2763.PubMedGoogle Scholar
  85. 85.
    R. M. Evans, P. J. Davies, M. Costa, Cancer Res. 1982, 42, 2729–2735.PubMedGoogle Scholar
  86. 86.
    U. Heinrich, IARC Sci. Publ. 1992, 405–413.Google Scholar
  87. 87.
    A. Martelli, E. Rousselet, C. Dycke, A. Bouron, J. M. Moulis, Biochimie 2006, 88, 1807–1814.PubMedCrossRefGoogle Scholar
  88. 88.
    R. J. Potts, I. A. Bespalov, S. S. Wallace, R. J. Melamede, B. A. Hart, Toxicology 2001, 161, 25–38.PubMedCrossRefGoogle Scholar
  89. 89.
    T. Zhou, X. Jia, R. E. Chapin, R. R. Maronpot, M. W. Harris, J. Liu, M. P. Waalkes, E. M. Eddy, Toxicol. Lett. 2004, 154, 191–200.PubMedCrossRefGoogle Scholar
  90. 90.
    P. Lichtlen, W. Schaffner, BioEssays 2001, 23, 1010–1017.PubMedCrossRefGoogle Scholar
  91. 91.
    M. Takiguchi, W. E. Achanzar, W. Qu, G. Li, M. P. Waalkes, Exp. Cell Res. 2003, 286, 355–365.CrossRefGoogle Scholar
  92. 92.
    W. C. Prozialeck, P. C. Lamar, Biochim. Biophys. Acta 1999, 1451, 93–100.CrossRefGoogle Scholar
  93. 93.
    W. C. Prozialeck, P. C. Lamar, S. M. Lynch, Toxicol. Appl. Pharmacol. 2003, 189, 180–195.PubMedCrossRefGoogle Scholar
  94. 94.
    J. M. Moulis, Biometals 2010, 23, 877–896.PubMedCrossRefGoogle Scholar
  95. 95.
    R. Brigelius-Flohe, L. Flohe, Antioxidants & Redox Signaling 2011, 15, 2335–2381.CrossRefGoogle Scholar
  96. 96.
    G. I. Giles, Curr. Pharm. Design 2006, 12, 4427–4443.CrossRefGoogle Scholar
  97. 97.
    P. D. Ray, B. W. Huang, Y. Tsuji, Cell. Signalling 2012, 24, 981–990.CrossRefGoogle Scholar
  98. 98.
    M. Valko, H. Morris, M. T. Cronin, Curr. Med. Chem. 2005, 12, 1161–1208.PubMedCrossRefGoogle Scholar
  99. 99.
    C. Byrne, S. D. Divekar, G. B. Storchan, D. A. Parodi, M. B. Martin, Toxicol. Appl. Pharmacol. 2009, 238, 266–271.PubMedCrossRefGoogle Scholar
  100. 100.
    C. D. Klaassen, J. Liu, B. A. Diwan, Toxicol. Appl. Pharmacol. 2009, 238, 215–220.PubMedCrossRefGoogle Scholar
  101. 101.
    K. P. Singh, R. Kumari, C. Pevey, D. Jackson, J. W. DuMond, Cancer Lett. 2009, 279, 84–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Food Chemistry and ToxicologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations