Natural and Artificial Proteins Containing Cadmium

  • Anna F. A. PeacockEmail author
  • Vincent L. PecoraroEmail author
Part of the Metal Ions in Life Sciences book series (MILS, volume 11)


This chapter describes an approach using designed proteins to understand the structure, spectroscopy, and dynamics of proteins that bind Cd(II). We will show that three-stranded coiled coils (3SCCs) based on the parent peptides TRI (Ac-G(LKALEEK)4G-NH2) or GRAND (Ac-G(LKALEEK)5G-NH2) have been essential for understanding how Cd(II) binds to thiolate-rich environments in proteins. Examples are given correlating physical properties such as the binding constants or deprotonation constants relating to structure. We present a scale that relates 113Cd NMR chemical shifts to structures extracted from 111mCd PAC experiments. In addition, we describe motional processes that help transport from the helical interface of proteins into the hydrophobic interior of helical bundles. These studies help clarify the chemistry of Cd(II) in relation to metal-regulated gene expression and detoxification.


coiled coil de novo design peptide protein thiol 

Abbreviations and Definitions


For the definition of the peptides see Table 1.




aminolevulinic acid dehydratase


aspartic acid


circular dichroism




extended X-ray absorption fine structure


glutamic acid












ligand-to-metal charge-transfer




nuclear Overhauser effect specroscpy


perturbed angular correlation


Protein Data Bank




nuclear magnetic resonance


three-stranded coiled coil







A.F.A.P. thanks the University of Birmingham and V.L.P. thanks the University of Michigan and the National Institute of Health for support of this research (R01 ES0 12236).


  1. 1.
    T. Lane, M. A. Saito, G. N. George, I. J. Pickering, R. C. Prince, F. F. M. Morel, Nature 2005, 435, 42.Google Scholar
  2. 2.
    R. H. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239–2314.PubMedCrossRefGoogle Scholar
  3. 3.
    M. Margoshes, B. L. Vallee, J. Am. Chem. Soc. 1957, 79, 4813–4814.CrossRefGoogle Scholar
  4. 4.
    L. M. Utschig, J. W. Bryson, T. V. O’Halloran, Science 1995, 268, 380–385.PubMedCrossRefGoogle Scholar
  5. 5.
    D. M. Ralston, T. V. O’Halloran, Proc. Natl. Acad. Sci. USA 1990, 87, 3846–3850.CrossRefGoogle Scholar
  6. 6.
    R. P. Novick, C. Roth, J. Bacteriol. 1968, 95, 1335–1342.PubMedGoogle Scholar
  7. 7.
    Y. Sun, M. Wong, B. P. Rosen, J. Biol. Chem. 2001, 276, 14955–14960.Google Scholar
  8. 8.
    C. Rensing, Y. Sun, B. Mitra, B. P. Rosen, J. Biol. Chem. 1998, 273, 32614–32617.Google Scholar
  9. 9.
    G. Endo, S. Silver, J. Bacteriol. 1995, 177, 4437–4441.PubMedGoogle Scholar
  10. 10.
    J. Ye, A. Kandegedara, P. Martin, B. P. Rosen, J. Bacteriol. 2005, 187, 4214–4221.PubMedCrossRefGoogle Scholar
  11. 11.
    A. Kandegedara, S. Thiyagarajann, K. C. Kondapalli, T. L. Stemmler, B. P. Rosen, J. Biol. Chem. 2009, 284, 14958–14965.Google Scholar
  12. 12.
    C. Rensing, J. Bacteriol. 2005, 187, 3909–3912.PubMedCrossRefGoogle Scholar
  13. 13.
    L. S. Busenlehner, N. J. Cosper, R. A. Scott, B. P. Rosen, M. D. Wong, D. P. Giedroc, Biochemistry 2001, 40, 4426–4436.PubMedCrossRefGoogle Scholar
  14. 14.
    L. S. Busenlehner, T.-C. Weng, J. E. Penner-Hahn, D. P. Giedroc, J. Mol. Biol. 2002, 319, 685–701.Google Scholar
  15. 15.
    M. F. Summers, Coord. Chem. Rev. 1988, 86, 43–134.CrossRefGoogle Scholar
  16. 16.
    A. K. Duhme, H. Z. Strasdeit, Z. Anorg. Allg. Chem. 1999, 625, 6–8.CrossRefGoogle Scholar
  17. 17.
    R. A. Santos, E. S. Gruff, S. A. Koch, J. Am. Chem. Soc. 1991, 113, 469–475.CrossRefGoogle Scholar
  18. 18.
    N. Govindaswamy, J. Moy, M. Millar, S. A. Koch, Inorg. Chem. 1992, 31, 5343–5344.CrossRefGoogle Scholar
  19. 19.
    J. S. Cavet, A. I. Graham, W. Meng, N. J. Robinson, J. Biol. Chem. 2003, 278, 44560–44566.Google Scholar
  20. 20.
    Y. Wang, L. Hemmingsen, D. P. Giedroc, Biochemistry 2005, 44, 8976–8988.PubMedCrossRefGoogle Scholar
  21. 21.
    L. Banci, I. Bertini, F. Cantini, S. Ciofi-Baffoni, J. S. Cavet, C. Dennison, A. I. Graham, D. R. Harvie, N. J. Robinson, J. Biol. Chem. 2007, 282, 30181-30188.Google Scholar
  22. 22.
    B. Tripet, K. Wagschal, P. Lavigne, C. T. Mant, R. S. Hodges, J. Mol. Biol. 2000, 300, 377–402.Google Scholar
  23. 23.
    P. B. Harbury, T. Zhang, P. S. Kim, T. Albert, Science 1993, 262, 1401–1407.PubMedCrossRefGoogle Scholar
  24. 24.
    B. Lovejoy, S. Choe, D. Cascio, D. K. McRorie, W. F. DeGrado, D. Eisenberg, Science 1993, 259, 1288–1293.PubMedCrossRefGoogle Scholar
  25. 25.
    D. N. Woolfson, The Design of Coiled-Coil Structures and Assemblies, in Advances in Protein Chemistry, Vol. 70, Eds D. A. D. Parry, J. M. Squire, Academic Press, 2005, pp. 79–112.Google Scholar
  26. 26.
    O. D. Monera, C. M. Kay, R. S. Hodges, Biochemistry 1994, 33, 3862–3871.PubMedCrossRefGoogle Scholar
  27. 27.
    E. K. O’Shea, K. J. Lumb, P. S. Kim, Curr. Biol. 1993, 3, 658–667.PubMedCrossRefGoogle Scholar
  28. 28.
    O. Iranzo, D. Ghosh, V. L. Pecoraro, Inorg. Chem. 2006, 45, 9959–9973.PubMedCrossRefGoogle Scholar
  29. 29.
    J. P. Schneide, J. W. Kelly, J. Am. Chem. Soc. 1995, 117, 2533–2546.CrossRefGoogle Scholar
  30. 30.
    G. Platt, C. Chung, M. Searle, Chem. Commun. 2001, 1162–1163.Google Scholar
  31. 31.
    J. Venkatraman, G. A. Naganagowda, R. Sudha, P. Balaram, Chem. Commun. 2001, 2660–2661.Google Scholar
  32. 32.
    R. P. Cheng, S. L. Fisher, B. J. Imperiali, J. Chem. Soc., Dalton Trans. 1996, 118, 11349–11356.Google Scholar
  33. 33.
    M. M. Rosenblatt, J. Y. Wang, K. S. Suslick, Proc. Natl. Acad. Sci. USA 2002, 100, 13140–13145.CrossRefGoogle Scholar
  34. 34.
    B. A. Krizek, D. L. Merkle, J. M. Berg, Inorg. Chem. 1993, 32, 937–940.CrossRefGoogle Scholar
  35. 35.
    M. D. Struthers, R. P. Cheng, B. J. Imperiali, J. Am. Chem. Soc. 1996, 118, 3073–3081.CrossRefGoogle Scholar
  36. 36.
    M. D. Struthers, R. P. Cheng, B. J. Imperiali, Science 1996, 271, 342–345.PubMedCrossRefGoogle Scholar
  37. 37.
    R. P. Bonomo, L. Casella, L. D. Gioia, H. Molinari, G. Impellizzeri, T. Jordan, G. Pappalardo, E. Rizzarelli, J. Chem. Soc., Dalton Trans. 1997, 2387–2389.Google Scholar
  38. 38.
    G. R. Dieckmann, D. K. McRorie, J. D. Lear, K. A. Sharp, W. F. DeGrado, V. L. Pecoraro, J. Mol. Biol. 1998, 280, 897–912.Google Scholar
  39. 39.
    G. R. Dieckmann, D. K. McRorie, D. L. Tierney, L. M. Utschig, C. P. Singer, T. V. O’Halloran, J. E. Penner-Hahn, W. F. DeGrado, V. L. Pecoraro, J. Am. Chem. Soc. 1997, 119, 6195–6196.CrossRefGoogle Scholar
  40. 40.
    C. J. Reedy, B. R. Gibney, Chem. Rev. 2004, 104, 617–649.PubMedCrossRefGoogle Scholar
  41. 41.
    B. R. Gibney, S. E. Mulholland, F. Rabanal, P. L. Dutton, Proc. Natl. Acad. Sci. USA 1996, 93, 15041–15046.CrossRefGoogle Scholar
  42. 42.
    V. L. Pecoraro, A. F. A. Peacock, O. Iranzo, M. Luczkowski, Understanding the biological chemistry of mercury using a de novo protein design strategy, in Bioinorg. Chem. ACS Sympos. Ser. 1012, , pp. 183–197.Google Scholar
  43. 43.
    B. T. Farrer, N. P. Harris, K. E. Balchus, V. L. Pecoraro, Biochem. 2001, 40, 14696–14705.CrossRefGoogle Scholar
  44. 44.
    B. T. Farrer, C. P. McClure, J. E. Penner-Hahn, V. L. Pecoraro, Inorg. Chem. 2000, 39, 5422–5423.PubMedCrossRefGoogle Scholar
  45. 45.
    M. Matzapetakis, D. Ghosh, T.-C. Weng, J. E. Penner-Hahn, V. L. Pecoraro, J. Biol. Inorg. Chem. 2006, 11, 876–890.PubMedCrossRefGoogle Scholar
  46. 46.
    B. T. Farrer, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2003, 100, 3760–3765.CrossRefGoogle Scholar
  47. 47.
    O. Iranzo, P. W. Thulstrup, S. Ryu, L. Hemmingsen, V. L. Pecoraro, Chem. Eur. J. 2007, 13, 9178–9190.PubMedCrossRefGoogle Scholar
  48. 48.
    D. S. Touw, C. E. Nordman, J. E. Stuckey, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2007, 104, 11969–11974.CrossRefGoogle Scholar
  49. 49.
    M. Matzapetakis, B. T. Farrer, T.-C. Weng, L. Hemmingsen, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 2002, 124, 8042–8054.PubMedCrossRefGoogle Scholar
  50. 50.
    M. Matzapetakis, V. L. Pecoraro, J. Am. Chem. Soc. 2005, 127, 18229–18233.PubMedCrossRefGoogle Scholar
  51. 51.
    N. Ogihara, M. S. Weiss, W. F. DeGrado, D. Eisenberg, Protein Sci. 1997, 6, 78–86.Google Scholar
  52. 52.
    K. T. O’Neil, W. F. DeGrado, Science 1990, 250, 646–651.PubMedCrossRefGoogle Scholar
  53. 53.
    S. Chakraborty, D. S. Touw, A. F. A. Peacock, J. Stuckey, V. L. Pecoraro, J. Am. Chem. Soc. 2010,132, 13240–13250.PubMedCrossRefGoogle Scholar
  54. 54.
    L. Hemmingsen, K. Nárcisz, E. Danielsen, Chem. Rev. 2004, 104, 4027–4061.PubMedCrossRefGoogle Scholar
  55. 55.
    L. Hemmingsen, L. Olsen, J. Antony, S. P. A. Sauer, J. Biol. Inorg. Chem. 2004, 9, 591–599.PubMedCrossRefGoogle Scholar
  56. 56.
    J. C. L. Reynolds, K. F. Cooke, S. H. Northrup, J. Phys. Chem. 1990, 94, 985–991.Google Scholar
  57. 57.
    T. L. Poulos, B. C. Finzel, A. J. Howard, Biochemistry 1986, 25, 5314–5322.PubMedCrossRefGoogle Scholar
  58. 58.
    O. D. Monera, F. D. Sönnichsen, L. Hicks, C. M. Kay, R. S. Hodges, Protein Eng. 1996, 9, 353–363.PubMedCrossRefGoogle Scholar
  59. 59.
    K.-H. Lee, M. Matzapetakis, S. Mitra, E. N. G. Marsh, V. L. Pecoraro, J. Am. Chem. Soc. 2004, 126, 9178–9179.PubMedCrossRefGoogle Scholar
  60. 60.
    K.-H. Lee, C. Cabello, L. Hemmingsen, E. N. G. Marsh, V. L. Pecoraro, Angew. Chem. Int. Ed. 2006, 45, 2864–2868.CrossRefGoogle Scholar
  61. 61.
    C. N. Pace, J. M. Scholtz, Biophys. J. 1998, 75, 422–427.PubMedCrossRefGoogle Scholar
  62. 62.
    P. T. Erskine, E. M. H. Duke, I. J. Tickle, N. M. Senior, M. J. Warren, J. B. Cooper, Acta Crystallogr. Sect. D 2000, 56, 421–430.CrossRefGoogle Scholar
  63. 63.
    O. Iranzo, T. Jakusch, K.H. Lee, L. Hemmingsen, V. L. Pecoraro, Chem. Eur. J. 2009, 15, 3761–3772.PubMedCrossRefGoogle Scholar
  64. 64.
    A. F. A. Peacock. J. A. Stuckey, V. L. Pecoraro, Angew. Chem. Int. Ed. 2009, 48, 7371–7374.Google Scholar
  65. 65.
    A. F. A. Peacock, L. Hemmingsen, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2008, 105, 16566–16571.CrossRefGoogle Scholar
  66. 66.
    M. Łuczkowski, M. Stachura, V. Schirf, B. Demeler, L. Hemmingsen, V. L. Pecoraro, Inorg. Chem. 2008, 47, 10875–10888.PubMedCrossRefGoogle Scholar
  67. 67.
    O. A. Kharenko, M. Y. Ogawa, J. Inorg. Biochem. 2004, 98, 1971–1974.Google Scholar
  68. 68.
    O. A. Kharenko, D. C. Kennedy, B. Demeler, M. J. Maroney, M. Y. Ogawa, J. Am. Chem. Soc. 2005, 127, 7678–7679.PubMedCrossRefGoogle Scholar
  69. 69.
    M. Mukherjee, X. Zhu, M. Y. Ogawa, Inorg. Chem. 2008, 47, 4430–4432.PubMedCrossRefGoogle Scholar
  70. 70.
    C. J. Henehan, D. L. Pountney, O. Zerbe, M. Vašák, Protein Sci. 1993, 2, 1756–1764.PubMedCrossRefGoogle Scholar
  71. 71.
    D. S. Touw, Ph.D. Thesis, University of Michigan, 2007.Google Scholar
  72. 72.
    D. Ghosh, K.-H. Lee, B. Demeler, V. L. Pecoraro, Biochemistry 2005, 44, 10732–10740.PubMedCrossRefGoogle Scholar
  73. 73.
    J. Y. Su, R. S. Hodges, C. M. Kay, Biochemistry 1994, 33, 15501–15510.PubMedCrossRefGoogle Scholar
  74. 74.
    O. Iranzo, C. Cabello, V. L. Pecoraro, V. L., Angew. Chem. Int. Ed. 2007, 46, 6688–6691.Google Scholar
  75. 75.
    O. Iranzo, S. Chakraborty, L. Hemmingsen, V. L. Pecoraro, J. Am. Chem. Soc. 2011, 133, 239–251.PubMedCrossRefGoogle Scholar
  76. 76.
    S. T. R. Walsh, H. Cheng, J. W. Bryson, H. Roder, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 1999, 96, 5486–5491.CrossRefGoogle Scholar
  77. 77.
    S. Chakraborty, J. Yudenfreund Kravitz, P. W. Thulstrup, L. Hemmingsen, W. F. DeGrado, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 2049–2053.CrossRefGoogle Scholar
  78. 78.
    R. K. Bogess, J. R. Absher, S. Morelen, L. T. Taylor, J. W. Hughes, Inorg. Chem. 1983, 22, 1273–1279.CrossRefGoogle Scholar
  79. 79.
    B. V. Cheesman, A. P. Arnold, D. L. Rabenstein, J. Am. Chem. Soc. 1988, 110, 6359–6364.CrossRefGoogle Scholar
  80. 80.
    S. Chakraborty, O. Iranzo, E. R. P. Zuiderweg, V. L. Pecoraro, J. Am.Chem. Soc. 2012, 134, 6191–6203.Google Scholar
  81. 81.
    M. Zastrow, A. F. A. Peacock, J. Stuckey, V. L. Pecoraro, Nature Chem., 2012, 4, 118–123. CrossRefGoogle Scholar
  82. 82.
    A. F. A. Peacock, O. Iranzo, V. L. Pecoraro, Dalton Trans. 2009, 13, 2271–2280.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA
  2. 2.School of ChemistryUniversity of BirminghamEdgbastonUK

Personalised recommendations