Evolving Self-reference: Matter, Symbols, and Semantic Closure

  • Howard Hunt Pattee
Chapter
Part of the Biosemiotics book series (BSEM, volume 7)

Abstract

A theory of emergent or open-ended evolution that is consistent with the epistemological foundations of physical theory and the logic of self-reference requires complementary descriptions of the material and symbolic aspects of events. The matter-symbol complementarity is explained in terms of the logic of self-replication, and physical distinction of laws and initial conditions. Physical laws and natural selection are complementary models of events. Physical laws describe those invariant events over which organisms have no control. Evolution by natural selection is a theory of how organisms increase their control over events. A necessary semantic closure relation is defined relating the material and symbolic aspects of organisms capable of open-ended evolution.

Keywords

Artificial Life Symbol System Symbolic Model Symbolic Description Complementary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bedian, V. (1982). The possible role of assignment catalysts in the origin of the genetic code. Origins of Life, 12, 181.PubMedCrossRefGoogle Scholar
  2. Born, M. (1965). Symbol and reality. Universitas, 7, 337–353. Reprinted in Born, M. Physics in my generation (pp. 132–146). New York: Springer-Verlag.Google Scholar
  3. Burgers, J. M. (1963). On the emergence of patterns of order. Bulletin of the American Mathematical Society, 69, 1–25.CrossRefGoogle Scholar
  4. Cassirer, E. (1957). The philosophy of symbolic forms (The phenomena of knowledge, Vol. 3). New Haven: Yale University Press.Google Scholar
  5. Churchland, P. M. (1981). Eliminative materialism and the propositional attitudes. Journal of Philosophy, 78(2), 67–90.CrossRefGoogle Scholar
  6. Conrad, M. (1990). The geometry of evolution. BioSystems, 24, 61–81.PubMedCrossRefGoogle Scholar
  7. Crick, F. (1993). The astonishing hypothesis. New York: Scribner’s Sons.Google Scholar
  8. Dietrich, E. (Ed.). (1994). Thinking computers and virtual persons. New York: Academic.Google Scholar
  9. Glansdorff, P., & Prigogine, I. (1971). Thermodynamics of structure, stability, and fluctuations. London: Wiley.Google Scholar
  10. Haken, H. (1977). Synergetics. Berlin: Springer.CrossRefGoogle Scholar
  11. Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346.CrossRefGoogle Scholar
  12. Hertz, H. (1894). The principles of mechanics (pp. 1–2). New York: Dover [orig. German ed., Prinzipien Mechanik, 1894] Quoted in Weyl, H. (1942). Philosophy of mathematics and natural science (p. 162). Princeton: Princeton University Press.Google Scholar
  13. Hopfield, J. J. (1994). Physics, computing, and why biology looks so different. Journal of Theoretical Biology, 171, 53–60.CrossRefGoogle Scholar
  14. Houtappel, R. M. F., Van Dam, H., & Wigner, E. P. (1965). The conceptual basis and use of the geometric invariance principles. Reviews of Modern Physics, 37, 595–632.CrossRefGoogle Scholar
  15. Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology, 22, 437.PubMedCrossRefGoogle Scholar
  16. Kauffman, S. A. (1993). The origins of order. New York: Oxford University Press.Google Scholar
  17. Langton, C. (1988). Artificial life. Redwood City: Addison-Wesley.Google Scholar
  18. Leff, H. S., & Rex, A. F. (Eds.). (1990). Maxwell’s demon, entropy, information, computing. Princeton: Princeton University Press.Google Scholar
  19. Newell, A. (1980). Physical symbol systems. Cognitive Science, 4, 135–183.CrossRefGoogle Scholar
  20. Nicolis, G., & Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley.Google Scholar
  21. Nicolis, G., & Prigogine, I. (1989). Exploring complexity. New York: Freeman.Google Scholar
  22. Pattee, H. H. (1969). How does a molecule become a message? Developmental Biology Supplement, 3, 1–16.Google Scholar
  23. Pattee, H. H. (1972). Laws, constraints, symbols, and languages. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 4, pp. 248–258). Edinburgh: Edinburgh University Press.Google Scholar
  24. Pattee, H. H. (1982). Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory, 5(4), 325–341.Google Scholar
  25. Pattee, H. H. (1988). Simulations, realizations, and theories of life. In C. Langton (Ed.), Artificial life (pp. 63–77). Redwood City: Addison-Wesley.Google Scholar
  26. Pattee, H. H. (1990). Response to E. Dietrich’s “Computationalism”. Social Epistemology, 4(2), 176–181.Google Scholar
  27. Post, E. (1965). Quoted from M. Davis (Ed.), The undecidable. Hewlett: Rowen Press.Google Scholar
  28. Pylyshyn, Z. (1984). Cognition and computation. Cambridge, MA: MIT Press.Google Scholar
  29. Rosen, R. (1977). Complexity and system description. In W. E. Harnett (Ed.), Systems, approaches, theories. Boston: Reidel.Google Scholar
  30. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  31. Sober, E. (1984). The nature of selection. Cambridge, MA: MIT Press.Google Scholar
  32. Stein, D. L. (Ed.). (1988). Lectures in the sciences of complexity. Redwood City: Addison-Wesley.Google Scholar
  33. Stein, D. L., & Nadel, L. (Eds.). (1990). Lectures in complex systems. Redwood City: Addison-Wesley.Google Scholar
  34. Toffoli, T. (1982). Physics and computation. International Journal of Theoretical Physics, 21, 165–175.CrossRefGoogle Scholar
  35. von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press. Chapter VI.Google Scholar
  36. von Neumann, J. (1966). In A. Burks (Ed.), The theory of self-reproducing automata. Urbana: University of Illinois Press.Google Scholar
  37. Waldrop, M. M. (1992). Complexity. New York: Simon & Schuster.Google Scholar
  38. Weber, B. H., Depew, D. J., & Smith, J. D. (1988). Entropy, information, and evolution. Cambridge, MA: MIT Press.Google Scholar
  39. Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. H. Zurek (Ed.), Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.Google Scholar
  40. Wheeler, J., & Zurek, W. (1983). Quantum theory and measurement. Princeton: Princeton Univ. Press.Google Scholar
  41. Whitehead, A. N. (1927). Symbolism: Its meaning and effect. New York: Macmillan.Google Scholar
  42. Wigner, E. P. (1964). Events, laws, and invariance principles. Science, 145, 995–999.PubMedCrossRefGoogle Scholar
  43. Yates, F. E. (1987). Self-organizing systems: The emergence of order. New York: Plenum.Google Scholar
  44. Yovits, M. C., & Cameron, S. (Eds.). (1960). Self organizing systems. New York: Pergamon.Google Scholar
  45. Yovits, M. C., Jacobi, G. T., & Goldstein, G. D. (Eds.). (1962). Self organizing systems, 1962. Washington, DC: Spartan.Google Scholar
  46. Zurek, W. H. (Ed.). (1990). Complexity, entropy, and the physics of information. Redwood City: Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Howard Hunt Pattee
    • 1
  1. 1.Binghamton UniversityVestalUSA

Personalised recommendations