Mathematical Progress or Mathematical Teaching? Bilingualism and Printing in European Renaissance Mathematics

Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 301)


In mathematical books of sixteenth-century Europe the question of teaching is present throughout. The very need for mathematical books is presented as the need of explaining mathematical contents effectively and of training the readers in mathematical techniques. The book should make understanding and learning mathematics more accessible: while for most books their printing was justified by being spiritually and morally edifying, for mathematical books the explicit purpose was to make mathematics clearer to follow and easier to absorb by a larger group of people. Mathematical books were intended to make the task of teaching lighter and even superfluous, providing the basis for self-teaching. These are the statements outlining the explicit principles of the actors. These statements open some questions as to the actual use of these books. The more basic question is which kind of teaching, preceptorial, private or public, was available at that time for these subjects, the following is in what teaching situation the books were present and used: here I shall work on the interplay between bilingualism and printing. Books will be taken into consideration here in different ways: as examples of textbooks in public or in private teaching, as sources for facts concerning teaching and learning, as reading of sixteenth-century theories about mathematical teaching and learning. I hope this could be taken as a contribution to refine our future questions about the connection between scientific books and scientific teaching in early modern Europe.


Mathematical Science Teaching Situation Private Teaching Mathematical Text Mathematical Discipline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Blair, A. 2010. Too much to know. Managing scholarly information before the modern age. New Haven: Yale University Press.Google Scholar
  2. Bosmans, H. 1907–1908. Sur le ‘Libro de Algebra’ de Pedro Nuñez. Bibliotheca Mathematica 8(1907–1908): 154–169.Google Scholar
  3. Bosmans, H. 1908. L’Algèbre de Pedro Nuñez. Annaes Scientificos da Academia Polytechnica do Porto 3: 222–271.Google Scholar
  4. Byrne, J.S. 2010. The mean distances of the Sun and commentaries on the Theorica planetarum. Journal for the History of Astronomy 42(2): 205–222.Google Scholar
  5. Chartier, R., M.M. Compère, and D. Julia. 1976. L’Éducation en France du XVIe au XVIIIe siècle. Paris: SEDES-CDU.Google Scholar
  6. Cifoletti, G.C. 2001. Matematica e fatti scientifici: polarità e simmetrie. Il ruolo degli algebristi francesi del Cinquecento nella costruzione dei fatti scientifici. Quaderni Storici 36(3): 771–798.Google Scholar
  7. Cifoletti, G.C. 2003a. Mathematics and rhetoric. Princeton Univ.: Princeton dissertation, U.M.I.Google Scholar
  8. Cifoletti, G.C. 2003b. Review of John R.C. Martyn (Editor and Translator). Pedro Nunes (1502–1578): His lost algebra and other discoveries. Isis 94(2): 369–371.Google Scholar
  9. Cifoletti, G.C. 2004. The algebraic art of discourse. Algebraic Dispositio, invention and limitation in sixteenth-century France. In History of science, history of text, Boston studies in the philosophy of science, ed. K. Chemla, 123–135. Boston: Kluwer Academic Publishers/Springer/Collection.CrossRefGoogle Scholar
  10. Cifoletti, G.C. 2006a. The art of thinking mathematically, Special issue of early science and medicine, vol. 11, 4. Leiden: Brill.Google Scholar
  11. Cifoletti, G.C. 2006b. Mathematics and rhetoric. Introduction. In (Cifoletti 2006, 369–389).Google Scholar
  12. Cifoletti, G.C. 2006c. From Valla to Viète: The rhetorical reform of logic and its use in early modern algebra. In (Cifoletti 2006, 390–423).Google Scholar
  13. Cifoletti, G.C. Forthcoming. A mathematics of the human world. To appear at Springer.Google Scholar
  14. Dubourg-Glatigny, P., and H. Vérin (eds.). 2008. Réduire en art, la technologie de la Renaissance aux Lumières. Paris: Editions de la Maison des sciences de l’homme.Google Scholar
  15. Echalier Serra, C. 2011. L’Arithmétique au XVIe siècle: Enquête menée à partir de l’Arithmeticae practicae methodus facilis de Gemma Frisius (1540). Memoir for “diplôme de l’EHESS”, directed by G.C. Cifoletti.Google Scholar
  16. Eisenstein, E. 1979. The printing press as an agent of change: Communication and cultural transformation in early modern Europe. Cambridge: Cambridge University Press.Google Scholar
  17. Finé, Oronce. 1528. La Théorique des Ciels, mouvements, et termes practiques des septs planètes. Paris: S. du Bois.Google Scholar
  18. Finé, Oronce. 1543. Les Canons et documents très amples, touchants l’usage et practique des communs Almanachz que l’on nomme ephemerides. Briefve et isagogique introduction sur la judiciaire astrologie. Paris: S. de Colines.Google Scholar
  19. Finé, Oronce. 1556. La composition et usage du quarré géométrique, par lequel on peut mesurer fidèlement toutes les longueurs, hauteurs et profunditez. Paris: G. Gourbin.Google Scholar
  20. Frisius, G. 1540. Arithmeticae practicae methodus facilis. Antwerp: G. Bonte.Google Scholar
  21. Frisius, G. 1545. Arithmeticae practicae methodus facilis. Cum Jacobi Peletarii Cenomani Annotationibus. Paris: G. Richard.Google Scholar
  22. Frisius, G. 1547. Arithmeticae Practicae Methodus Facilis. Antwerp: G. Bonte.Google Scholar
  23. Frisius, G. 1567. Aritmetica prattica facilissima… Con l’aggiunta dell’abbreviamento de i rotti astronomici di G. Pelletario. Trans. O. Toscanella. Venice: Giovanni Bariletto.Google Scholar
  24. Goulding, R. 2010. Defending Hypathia Ramus, Savile and the Renaissance discovery of the history of mathematical history. Dordrecht: Springer.Google Scholar
  25. Grafton, A., and L. Jardine. 1987. From humanism to the humanities: The institutionalizing of the liberal arts in fifteenth- and sixteenth Europe. Cambridge, MA: Harvard University Press.Google Scholar
  26. Hallyn, F. 2008. Gemma Frisius, Arpenteur de la terre et du ciel. Paris: Champion.Google Scholar
  27. Høyrup, J. 1998. A new art in ancient clothes. Physis 25: 11–50.Google Scholar
  28. Leitão, H. 2002. Pedro Nunes, leitor de textos antigos e modernos. In Pedro Nunes e Damião de Góis. Dois rostos do humanismo português, Coord. Aires A. Nascimento, 3158. Lisboa: Guimarães Editores.Google Scholar
  29. Leitão, H. (ed.). 2010. Obras de Pedro Nunes. Lisboa: Academia das Ciências de Lisboa.Google Scholar
  30. Leitão, H., and L. Azevedo Martins. 2002. Pedro Nunes, 1502–1578: Novas terras, novos mares e o que mays he: novo ceo e novas estrellas. Catálogo da Exposição Bibliográfica sobre Pedro Nunes. Comissário científico: Henrique de Sousa Leitão; coordenação técnica: Lígia de Azevedo Martins. Lisboa: Biblioteca Nacional.Google Scholar
  31. Morse, J. 1982. The reception of Diophantus. Princeton Univ.: Princeton dissertation, U.M.I.Google Scholar
  32. Nunez, P. 1567. Libro de Algebra en Arithmetica y Geometria. Antwerp: Heirs of A. Birkman.Google Scholar
  33. Pantin, I. 1995. La poésie du ciel en France. Geneva: Droz.Google Scholar
  34. Peletier du Mans, J. 1541. L’Art Poetique d’Horace traduit en vers françois. Paris: M. de Vascosan.Google Scholar
  35. Peletier du Mans, J. 1549. L’Aritmetique. Poitiers: Marnef.Google Scholar
  36. Peletier du Mans, J. 1550. Dialogue de l’Ortografe et Prononciation Françoese. Poitiers: Jean & Enguilbert de Marnef.Google Scholar
  37. Peletier du Mans, J. 1554. L’Algèbre. Lyon: J. de Tournes.Google Scholar
  38. Peletier du Mans, J. 1555. L’Art Poetique. Lyon: J. de Tournes.Google Scholar
  39. Peletier du Mans, J. 1557. In Euclidis elementa geometrica demonstrationum libri sex. Lyon: J. De Tournes et G. Gazeau.Google Scholar
  40. Peletier du Mans, J. 1560. De Occulta parte numerorum, quae algebra et almucabala vulgo dicitur. Paris: G. Cavellat.Google Scholar
  41. Peletier du Mans, J. 1572. De Usu geometriae. Paris: G. Gourbin.Google Scholar
  42. Peletier du Mans, J. 1573. De l’usage de la Géométrie. Paris: G. Gourbin.Google Scholar
  43. Peletier du Mans, J. 1611. Les six premiers livres des Éléments géométriques d’Euclide, avec les démonstrations de Jaques Peletier, du Mans, traduicts en françois par Jean II de Tournes. Lyon: J. de Tournes.Google Scholar
  44. Pritchard, R.E. 1990. The sixteenth-century: Excluding drama after 1550. The Year’s Work in English Studies 70: 252–265.Google Scholar
  45. Rose, P.L. 1975. The Italian renaissance of mathematics. Studies on humanists and mathematicians from Petrarch to Galileo. Geneva: Droz.Google Scholar
  46. Schechner, S.J. 1997. Comets, popular culture and the birth of modern cosmology. Princeton: Princeton University Press.Google Scholar
  47. Tartaglia, N. 1543. Euclide Megarense philosopho Solo introduttore delle scientie mathematice. Venise: V. Rofinelli.Google Scholar
  48. Van Ortroy, F. (1920) 1960. Bio-bibliographie de Gemma Frisius. Amsterdam: Meridian.Google Scholar
  49. Yates, F. 1988. The French academies of the sixteenth century, 1st publ. 1947. London: Routledge.Google Scholar
  50. Zemon Davis, N. 1960. Sixteenth-century French arithmetics on the business life. Journal of the History of Ideas 21: 1.CrossRefGoogle Scholar
  51. Zemon Davis, N. 1964. Peletier and Beza part company. Studies in the Renaissance 11: 188–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Directrice d’études à l’Ecole des Hautes Etudes en Sciences SocialesCentre Alexandre KoyréParisFrance

Personalised recommendations