Adapting Mass Algaculture for a Northern Climate

Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 25)

Abstract

Most attention for algal biofuel-related schemes has been focused on ‘optimal’ locations, such as the southwestern USA. While these locations have clear advantages such as high yearly insolation and availability of unused land, we believe a case can also be made for adapting algal biofuels for a diversity of ‘suboptimal’ climates. The key, as in other regions, will be to link algaculture with industrial and municipal waste resources, including nutrients from wastewater and CO2 from point source industrial emissions. Productivities comparable to warmer climates may be obtained throughout the year by a combination of factors, including appropriate strain selection for low temperature and waste heat utilization, or by switching to a heterotrophic growth mode when light is insufficient for productive photosynthesis. In this manner, mass algaculture and associated R&D can be justified by offering valuable remediatory functions (i.e. tertiary wastewater treatment and CO2 abatement), rather than relying on optimistic estimations of oil and biomass productivity to spur development in this field.

Keywords

Anaerobic Digestion Algal Biomass Waste Heat Microalgal Biomass Redfield Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

 References

  1. Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11(8):643–647CrossRefGoogle Scholar
  2. Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefin 2(5):455–469CrossRefGoogle Scholar
  3. Baliga R, Powers SE (2010) Sustainable algae biodiesel production in cold climates. Int J Chem Eng. doi: 10.1155/2010/102179
  4. Béchet Q, Shilton A, Fringer OB, Muñoz R, Guieysse B (2010) Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol 44(6):2197–2203CrossRefGoogle Scholar
  5. Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue – green algae. Enzyme Microb Technol 1(2):83–90CrossRefGoogle Scholar
  6. Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38(Supplement 1):S475–S479CrossRefGoogle Scholar
  7. Benemann JR, Van Olst JC, Massingill MJ, Weissman JC, Brune DE (2002) The controlled eutrophication process: using microalgae for CO2 utilization and agricultural fertilizer recycling. In Greenhouse gas control technologies – 6th international conference, pp 1433–1438Google Scholar
  8. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, others (2007) Climate change 2007: synthesis report. An assessment of the intergovernmental panel on climate change. IPCC. www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf. Accessed 10 Aug 2010
  9. Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163(1):16–20CrossRefGoogle Scholar
  10. Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. http://www.seambiotic.com/uploads/algae%20report%2004%202009.pdf. Accessed 24 July 2010
  11. Chevalier P, Proulx D, Lessard P, Vincent WF, De La Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12(2):105–112CrossRefGoogle Scholar
  12. Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42(11):1537–1545CrossRefGoogle Scholar
  13. Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105CrossRefGoogle Scholar
  14. Chisti Y (2008a) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352CrossRefGoogle Scholar
  15. Chisti Y (2008b) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefGoogle Scholar
  16. Christie WW (2003) Lipid analysis, 3rd edn. The Oily Press, BridgewaterGoogle Scholar
  17. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819CrossRefGoogle Scholar
  18. Collet P, Hélias A, Lardon L, Ras M, Goy R, Steyer J (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214CrossRefGoogle Scholar
  19. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929CrossRefGoogle Scholar
  20. Dortmundt D, Doshi K (1999) Recent developments in CO2 removal membrane technology. UOP LLC. www.uop.com/objects/84CO2RemvbyMembrn.pdf. Accessed 10 Aug 2010
  21. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412CrossRefGoogle Scholar
  22. Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35(1):155–161CrossRefGoogle Scholar
  23. Ehimen EA (2010) Energy balance of microalgal-derived biodiesel. Energy Sources Part A Recovery Util Environ Eff 32(12):1111Google Scholar
  24. Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 1(6):371–381CrossRefGoogle Scholar
  25. Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684CrossRefGoogle Scholar
  26. Elliott DC, Neuenschwander GG, Hart TR, Butner RS, Zacher AH, Engelhard MH, Young JS, McCready DE (2004) Chemical processing in high-pressure aqueous environments. 7. Process development for catalytic gasification of wet biomass feedstocks. Ind Eng Chem Res 43(9):1999–2004CrossRefGoogle Scholar
  27. Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27(1):8–14CrossRefGoogle Scholar
  28. Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 19(5):756–766CrossRefGoogle Scholar
  29. Goldman JC, Stanley HI (1974) Relative growth of different species of marine algae in wastewater-seawater mixtures. Mar Biol 28(1):17–25CrossRefGoogle Scholar
  30. Green F, Bernstone L, Lundquist T, Oswald W (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217CrossRefGoogle Scholar
  31. Griffiths EW (2009) Removal and utilization of wastewater nutrients for algae biomass and biofuels. Dissertation, Utah State UniversityGoogle Scholar
  32. Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7(4):497–506CrossRefGoogle Scholar
  33. Grönlund E, Klang A, Falk S, Hanæus J (2004) Sustainability of wastewater treatment with microalgae in cold climate, evaluated with energy and socio-ecological principles. Ecol Eng 22(3):155–174CrossRefGoogle Scholar
  34. Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hlrayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46(1):799–809CrossRefGoogle Scholar
  35. Huang H, Mavinic DS, Lo KV, Koch FA (2006) Production and basic morphology of struvite crystals from a pilot-scale crystallization process. Environ Technol 27(3):233–245CrossRefGoogle Scholar
  36. Hunter P (2010) The tide turns towards microalgae. EMBO Rep 11(8):583–586CrossRefGoogle Scholar
  37. Jansson C, Northen T (2010) Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21(3):365–371CrossRefGoogle Scholar
  38. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413CrossRefGoogle Scholar
  39. Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Manage 38(Supplement 1):S505–S510CrossRefGoogle Scholar
  40. Kadam K (2001) Microalgae production from power plant flue gas: environmental implications on a life cycle basis. NREL technical report. http://www.fao.org/uploads/media/0106_NREL_-_Microalgae_production_from_power_plant_flue_gas.pdf. Accessed 14 Aug 2010
  41. Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10):905–922CrossRefGoogle Scholar
  42. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145CrossRefGoogle Scholar
  43. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380CrossRefGoogle Scholar
  44. Lardon L, Hélias A, Sialve B, Steyer J, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481CrossRefGoogle Scholar
  45. Lee Y (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315CrossRefGoogle Scholar
  46. Lenton TM, Watson AJ (2000) Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean. Global Biogeochem Cycles 14(1):225–248CrossRefGoogle Scholar
  47. Lundin M, Bengtsson M, Molander S (2000) Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environ Sci Technol 34(1):180–186CrossRefGoogle Scholar
  48. Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38Google Scholar
  49. Maurer M, Schwegler P, Larsen T (2003) Nutrients in urine: energetic aspects of removal and recovery. Water Sci Technol 48(1):37–46Google Scholar
  50. McCarthy JJ (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of working group ii to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press. http://www.ipcc.ch/ipccreports/tar/wg2/index.htm. Accessed 25 July 2010
  51. McNichol J, MacDougall KM, Melanson JE, McGinn PJ (2011) Suitability of Soxhlet extraction to quantify microalgal fatty acids as determined by comparison with in situ transesterification. Lipids. doi: 10.1007/s11745-011-3624-3
  52. Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78(10):1213–1215CrossRefGoogle Scholar
  53. Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96(1):27–36CrossRefGoogle Scholar
  54. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39–40(1):643–653CrossRefGoogle Scholar
  55. Oswald WJ (1973) Productivity of algae in sewage disposal. Sol Energy 15(1):107–117CrossRefGoogle Scholar
  56. Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15(2):99–106CrossRefGoogle Scholar
  57. Pagand P, Blancheton J, Lemoalle J, Casellas C (2000) The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquacult Res 31(10):729–736CrossRefGoogle Scholar
  58. Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou JT, Wilson KE, O’Leary SJB, McGinn PJ (2011) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol. doi: 10.1007/s10811-011-9772-2
  59. Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2008) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21(1):135–144CrossRefGoogle Scholar
  60. Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110(4):441–461CrossRefGoogle Scholar
  61. Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350CrossRefGoogle Scholar
  62. Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2(3):195–206CrossRefGoogle Scholar
  63. Rose GD (1999) Community-based technologies for domestic wastewater treatment and reuse: options for urban agriculture. International Development Research Centre. http://idl-bnc.idrc.ca/dspace/bitstream/10625/29827/2/117783.pdf. Accessed 24 July 2010
  64. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43CrossRefGoogle Scholar
  65. Scholes CA, Kentish SE, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66CrossRefGoogle Scholar
  66. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US DOE’s aquatic species program: biodiesel from algae. NREL technical report. http://idl-bnc.idrc.ca/dspace/bitstream/10625/29827/2/117783.pdf. Accessed 1 June 2010
  67. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416CrossRefGoogle Scholar
  68. Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535CrossRefGoogle Scholar
  69. Su Z, Kang R, Shi S, Cong W, Cai Z (2008) An economical device for carbon supplement in large-scale micro-algae production. Bioprocess Biosyst Eng 31(6):641–645CrossRefGoogle Scholar
  70. Subhadra BG (2010) Comment on “environmental life cycle comparison of algae to other bioenergy feedstocks”. Environ Sci Technol 44(9):3641–3642CrossRefGoogle Scholar
  71. Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38(9):4897–4902CrossRefGoogle Scholar
  72. Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31(6):880–888CrossRefGoogle Scholar
  73. Third K, Sliekers AO, Kuenen J, Jetten M (2001) The canon system (completely autotrophic ­nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24(4):588–596CrossRefGoogle Scholar
  74. van Beilen JB (2010) Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioprod Biorefin 4(1):41–52CrossRefGoogle Scholar
  75. Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24(10):1113–1118CrossRefGoogle Scholar
  76. Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21(5):509–517CrossRefGoogle Scholar
  77. Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4(3):287–295CrossRefGoogle Scholar
  78. Wilde EW, Benemann JR, Weissman JC, Tillett DM (1991) Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3(2):159–167CrossRefGoogle Scholar
  79. Williams DR, McCormick EH, Horenstein BK, Hake JM, Chakrabarti AR, Gray DM (2008) A new role for wastewater treatment facilities in the 21st century. Proc Water Environ Fed. doi: 10.2175/193864708788807466
  80. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165CrossRefGoogle Scholar
  81. Yen H, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute for Marine BiosciencesNational Research Council of CanadaHalifaxCanada

Personalised recommendations