Fractional Klein-Kramers Equations: Subdiffusive and Superdiffusive Cases

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Brownian diffusion processes in phase space are described by the Klein-Kramers equation governing the time evolution of the probability density W(x, v, t) to find the test particle with velocity v at position x at time t. We here summarise generalisations of this equation to anomalous diffusion processes. These fractional Klein-Kramers equations describe either subdiffusive or superdiffusive processes.

Keywords

Probability Density Function Test Particle Wait Time Distribution Continuous Time Random Walk Constant External Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Funding from the Academy of Finland within the FiDiPro scheme is gratefully acknowledged.

References

  1. 1.
    Barkai E, Cheng YC (2003) Ageing continuous time random walks. J Chem Phys 118:6167–6178CrossRefADSGoogle Scholar
  2. 2.
    Barkai E, Silbey R (2000) Fractional Kramers equation. J Phys Chem B 104: 3866–3874CrossRefGoogle Scholar
  3. 3.
    Barkai E, Metzler R, Klafter J (2000) From continuous time random walks to the fractional Fokker-Planck equation. Phys Rev E 61:132–138MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Bel G, Barkai E (2005) Weak ergodicity breaking in the continuous time random walk. Phys Rev Lett 94:240602CrossRefADSGoogle Scholar
  5. 5.
    Bouchaud J-P (1992) Weak ergodicity breaking and aging in disordered-systems. J Phys. I (Paris) 2:1705–1713Google Scholar
  6. 6.
    Bouchaud J-P, Georges A (1990) Anomalous diffusion in disordered media—statistical mechanisms, models and physical applications. Phys Rep 195:127–293MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Burov S, Metzler R, Barkai E (2010) Aging and non-ergodicity beyond the Khinchin theorem. Proc Natl Acad Sci USA 107:13228–13233MathSciNetMATHCrossRefADSGoogle Scholar
  8. 8.
    Burov S, Jeon J-H, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13:1800–1812CrossRefGoogle Scholar
  9. 9.
    Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89MathSciNetMATHCrossRefADSGoogle Scholar
  10. 10.
    Coffey WT, Kalmykov YuP, Waldron JT (2004) The Langevin equation. World Scientific, SingaporeMATHGoogle Scholar
  11. 11.
    Compte A, Metzler R (1997) The generalised Cattaneo equation for the description of anomalous transport processes. J Phys A 30:7277–7289MathSciNetMATHCrossRefADSGoogle Scholar
  12. 12.
    Davies RW (1954) The connection between the Smoluchowski equation and the Kramers-Chandrasekhar equation. Phys Rev 93:1169–1170MATHCrossRefADSGoogle Scholar
  13. 13.
    Einstein A (1905) The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann Phys 17:549–560MATHCrossRefGoogle Scholar
  14. 14.
    Einstein A (1906) The theory of the Brownian Motion. Ann Phys 19:371–381MATHCrossRefGoogle Scholar
  15. 15.
    Fogedby HC (1994) Langevin equations for continuous time Lévy flights. Phys Rev E 50:1657–1660CrossRefADSGoogle Scholar
  16. 16.
    He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101:058101CrossRefADSGoogle Scholar
  17. 17.
    Jeon J-H, Metzler R (2010) Analysis of short subdiffusive time series: scatter of the time averaged mean squared displacement. J Phys A 43:252001MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Jeon J-H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106:048103CrossRefADSGoogle Scholar
  19. 19.
    Jespersen S, Metzler R, Fogedby HC (1999) Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys Rev E 59:2736–2745CrossRefADSGoogle Scholar
  20. 20.
    Klafter J, Sokolov IM (2011) First steps in random walks: from tools to applications. Oxford University Press, OxfordMATHGoogle Scholar
  21. 21.
    Klein O (1921) Arkiv för Matematik, Astronomi och Fysik 16(5)Google Scholar
  22. 22.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304MathSciNetMATHCrossRefADSGoogle Scholar
  23. 23.
    Langevin P (1908) The theory of brownian movement. Comptes Rendues 146:530–533MATHGoogle Scholar
  24. 24.
    Lubelski A, Sokolov IM, Klafter J (2008) Nonergodicity mimics inhomogeneity in single particle tracking. Phys Rev Lett 100:250602CrossRefADSGoogle Scholar
  25. 25.
    Metzler R, Compte A (1999) Stochastic foundation of normal and anomalous Cattaneo-type transport. Physica A 268:454–468CrossRefGoogle Scholar
  26. 26.
    Metzler R, Nonnenmacher TF (1998) Fractional diffusion, waiting time distributions, and Cattaneo-type equations. Phys Rev E 57:6409–6414MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77MathSciNetMATHCrossRefADSGoogle Scholar
  28. 28.
    Metzler R, Klafter J (2000) Accelerating Brownian motion: a fractional dynamics approach to fast diffusion. Europhys Lett 51:492–498CrossRefADSGoogle Scholar
  29. 29.
    Metzler R, Klafter J (2000) From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation. J Phys Chem B 104:3851–3857CrossRefGoogle Scholar
  30. 30.
    Metzler R, Klafter J (2000) Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys Rev E 61:6308–6311MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Metzler R, Sokolov IM (2002) Superdiffusive Klein-Kramers equation: normal and anomalous time evolution and Lévy walk moments. Europhys Lett 58:482–488CrossRefADSGoogle Scholar
  32. 32.
    Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J Phys A 37:R161–R208MathSciNetMATHCrossRefADSGoogle Scholar
  33. 33.
    Metzler R, Barkai E, Klafter J (1999) Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys Rev Lett 82:3563–3567CrossRefADSGoogle Scholar
  34. 34.
    Metzler R, Barkai E, Klafter J (1999) Anomalous transport in disordered systems under the influence of external fields. Physica A 266: 343–350CrossRefGoogle Scholar
  35. 35.
    Metzler R, Barkai E, Klafter J (1999) Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys Lett 46:431–436MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Metzler R, Tejedor V, Jeon J-H, He Y, Deng W, Burov S, Barkai E (2009) Analysis of single particle trajectories: from normal to anomalous diffusion. Acta Phys. Polonica B 40:1315–1331ADSGoogle Scholar
  37. 37.
    Monthus C, Bouchaud J-P (1996) Models of traps and glass phenomenology. J Phys A 29:3847–3869MATHCrossRefADSGoogle Scholar
  38. 38.
    Neusius T, Sokolov IM, Smith JC (2009) Subdiffusion in time-averaged, confined random walks. Phys Rev E 80:011109CrossRefADSGoogle Scholar
  39. 39.
    Rebenshtok A, Barkai E (2008) Weakly non-ergodic statistical physics. J Stat Phys 133:565-Google Scholar
  40. 40.
    Risken H (1989) The Fokker-Planck equation. Springer, BerlinMATHCrossRefGoogle Scholar
  41. 41.
    Sokolov IM, Heinsalu E, Hänggi P, Goychuk I (2009) Universal fluctuations in subdiffusive transport. EPL 86:30009Google Scholar
  42. 42.
    Solomon TH, Weeks ER, Swinney HL (1993) Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys Rev Lett 71:3975–3978CrossRefADSGoogle Scholar
  43. 43.
    van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland, AmsterdamMATHGoogle Scholar
  44. 44.
    von Smoluchowski M (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys 21:756–780MATHCrossRefGoogle Scholar
  45. 45.
    Weigel AV, Simon B, Tamkun MM, Krapf D (2011) Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci USA 108:6438–6443CrossRefADSGoogle Scholar
  46. 46.
    West BJ, Grigolini P, Metzler R, Nonnenmacher TF (1997) Fractional diffusion and Lévy stable processes. Phys Rev E 55:99–106 (1997)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, OxfordMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Physics and AstronomyUniversity of PotsdamPotsdam-GolmGermany
  2. 2.Physics DepartmentTampere University of TechnologyTampereFinland

Personalised recommendations