Ductile-Brittle Transition

  • Dominique François
  • André Pineau
  • André Zaoui
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 191)


For many materials impact tests display a ductile-brittle transition when temperature is lowered. Analyses of the limit moment of notched test pieces and of the stress distribution are given, especially for the Charpy specimen. Testing procedure including instrumented impact testing are described. Various ductile-brittle transition temperatures (DBT) can be defined. They are related to metallurgical variables. Drop weight tests are more representative of in-service situations. The failure analysis diagram puts together the results. Correlations exist between them. Modelling of test pieces, especially of the Charpy specimen, provides ways to predict the DBT.


Cleavage Fracture Ductile Crack Charpy Specimen Pressure Vessel Steel Charpy Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amar E, Pineau A (1987) Application of a local approach to ductile-brittle transition in a low – alloyed steel. Nucl Eng Des 105:89–96CrossRefGoogle Scholar
  2. Amstrong RW (1966) Cleavage crack propagation within crystals by the Griffith mechanism versus a dislocation mechanism. Mater Sci Eng 1:251–256CrossRefGoogle Scholar
  3. Beremin FM (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans A 14A:2277–2287Google Scholar
  4. Bernauer G, Brocks W, Schmitt W (1999) Modifications of the Beremin model for cleavage fracture in the transition region of a ferritic steel. Eng Fract Mech 64:305–325CrossRefGoogle Scholar
  5. Besson (2004) Local approach to fracture. Les Presses Ecole des Mines de ParisGoogle Scholar
  6. Bouyne E, Joly P, Houssin B, Wiesner CS, Pineau A (2001) Mechanical and microstructural investigations into the crack arrest behaviour of a modern 2¼ -1Mo pressure vessel steel. Fatigue Fract Eng Mater Struct 24:105–116CrossRefGoogle Scholar
  7. Brückner A, Munz D (1984) Scatter of fracture toughness in the brittle-ductile transition region of a ferritic steel. In: Advances in probabilistic fracture mechanics, PVP 92. American Society of Mechanical Engineers, New York, pp 105–111Google Scholar
  8. Busso E, Lei Y, O’Dowd NP, Webster GA (1998) Mechanistic prediction of fracture processes in ferritic steel welds within the transition temperature regime. J Eng Mater Technol Trans ASME 120:328–337CrossRefGoogle Scholar
  9. Charpy G (1901) Note sur l’essai des métaux à la flexion par choc de barreaux entaillés. Mémoires et comptes rendus de la société des ingénieurs civils de France, pp 848–877Google Scholar
  10. Chen JH, Wang GZ, Wang HJ (1996) A statistical model for cleavage fracture of low alloy steel. Acta Mater 44:3979–3989CrossRefGoogle Scholar
  11. Chen JH, Wang Q, Wang GZ, Li Z (2003) Fracture behaviour at crack tip – a new framework for cleavage mechanisms of steel. Acta Mater 51:1841–1855CrossRefGoogle Scholar
  12. Constant A, Henry G, Charbonnier J-C (1992) Les principes de base des traitements thermiques et thermomécaniques des aciers. Editions PYC, ParisGoogle Scholar
  13. Dodds RH, Ruggieri C, Koppenhoefer K (1997) 3-D constraint effects on models for transferability of cleavage fracture toughness. In: Underwood JH, MacDonald BD, Mitchell MR (eds) Fatigue and fracture mechanics, vol 28. ASTM STP 1321. American Society for Testing and Materials, Philadelphia, pp 179–197Google Scholar
  14. François D (2007) Essais de rupture. Essais par choc. Techniques de l’Ingénieur M4 165:1–17Google Scholar
  15. François D, Pineau A (2002) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/LondonGoogle Scholar
  16. Gao X, Dodds RH, Tregoning RL, Joyce JA, Link RE (1999) A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue Fract Eng Mater Struct 22:481–493CrossRefGoogle Scholar
  17. Griffiths JR, Owen DRJ (1971) An elastic-plastic stress analysis for a notched bar in plane strain bending. J Mech Phys Solids 19:419–431CrossRefGoogle Scholar
  18. Heerens J, Hellmann D (2002) Development of the Euro fracture toughness data set. Eng Fract Mech 69:421–449CrossRefGoogle Scholar
  19. Kannan VC (1969) Direct dislocation velocity measurement in silicon by X-ray topography, Ph.D. thesis, University of California, Berkeley, USAGoogle Scholar
  20. Kannan VC, Washburn J (1970) Direct dislocation velocity measurement in silicon by X-ray topography. J Appl Phys 41:3589–3597CrossRefGoogle Scholar
  21. Kelly A, Tyson WR, Cottrell AH (1967) Ductile and brittle crystals. Philos Mag 15:567–586CrossRefGoogle Scholar
  22. Knott JF (1973) Fundamentals of fracture mechanics. Butterworths, LondonGoogle Scholar
  23. Koers RWJ, Krom AHM, Bakker A (1995) Prediction of cleavage fracture in the brittle-to ductile transition region of a ferritic steel. In: Kirk M, Bakker Ad (eds) Constraint effects in fracture theory and applications, vol 2. ASTM STP 1244. American Society for Testing and Materials, Philadelphia, pp 191–208Google Scholar
  24. Mathur KK, Needleman A, Tvergaard V (1993) Dynamic 3-D analysis of the Charpy V notch test. Model Simul Mater Sci Eng 1:467–484CrossRefGoogle Scholar
  25. Mathur KK, Needleman A, Tvergaard V (1994) 3-D analysis of failure modes in the Charpy impact test. Model Simul Mater Sci Eng 2:617–635CrossRefGoogle Scholar
  26. Minami F, Iida M, Takahara W, Konda N, Arimochi K (2002) Fracture mechanics analysis of Charpy test results based on the Weibull stress criterion. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 411–418Google Scholar
  27. Morrison J, Wu X (2002) The toughness transition curve of a ship steel. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 385–400Google Scholar
  28. Nilsson F, Faleskog J, Zaremba K, Oberg H (1992) Elastic-plastic fracture mechanics for pressure vessel design. Fatigue Fract Eng Mater Struct 15:73–89CrossRefGoogle Scholar
  29. Pellini WS (1971) Principle of fracture safe design. Weld J 50:915–1095Google Scholar
  30. Pellini WS, Puzak PP (1964) Practical considerations in applying laboratory test criteria to the fracture-safe design of pressure vessels. Trans ASME Ser A J Eng Power 86:429–443CrossRefGoogle Scholar
  31. Pelloux RM (1991) Case histories of failure analysis. Conference proceedings of the international conference and exhibits on failure analysis, Montréal, Quebec, Canada, 8–11 July 1991, pp 145–150Google Scholar
  32. Pineau A (2008) Modeling ductile-to-brittle fracture transition in steels – micromechanical and physical challenges. Int J Fract 150:129–156zbMATHCrossRefGoogle Scholar
  33. Pineau A, Pardoen T (2007) Failure mechanisms of metals. Chapter 6. In: Ainsworth RA, Schwalbe RA (eds) Comprehensive structural integrity, vol II. Elsevier, Amsterdam, pp 686–797Google Scholar
  34. Porter D, Laukkanen A, Nevasmaa P, Rahka K, Wallin K (2004) Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatment. Int J Press Vessel Pip 81:867–877CrossRefGoogle Scholar
  35. Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40:239–271CrossRefGoogle Scholar
  36. Rice JR, Thomson R (1974) Ductile versus brittle behaviour of crystals. Philos Mag 29:73–97CrossRefGoogle Scholar
  37. Rivalin F (1998) Développement d’aciers pour gazoducs à haute limite d’élasticité et ténacité élevée: mécanique et mécanismes de la rupture ductile à grande vitesse. Ph.D. thesis, Ecole des Mines Paris, FranceGoogle Scholar
  38. Robertson TS (1953) Propagation of brittle fracture in steel. J Iron Steel Inst Lond 175:361–374Google Scholar
  39. Rossol A (1998) Détermination de la ténacité d’un acier faiblement allié à partir de l’essai Charpy instrumenté. Ph.D. thesis, Ecole Centrale Paris, FranceGoogle Scholar
  40. Rossol A, Berdin C, Forget P, Prioul C, Marini B (1999) Mechanical aspects of the Charpy impact test. Nucl Eng Des 188:217–229Google Scholar
  41. Rossol A, Berdin C, Prioul C (2002a) Charpy impact test modelling and local approach to fracture. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 445–452Google Scholar
  42. Rossol A, Berdin C, Prioul C (2002b) Determination of the fracture toughness of a low alloy steel by the instrumented Charpy impact test. Int J Fract 115:205–226CrossRefGoogle Scholar
  43. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111CrossRefGoogle Scholar
  44. Ruggieri C, Dodds RH Jr (1996) A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. Int J Fract 79:309–340CrossRefGoogle Scholar
  45. Ruggieri C, Panontin TL, Dodds RH (1996) Numerical modelling of ductile crack growth in 3-D using computational cell elements. Int J Fract 82:67–95CrossRefGoogle Scholar
  46. Schmitt W, Varfolomeyev I, Böhme W (2002) Modelling of the Charpy test as a basis for toughness evaluation. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 45–56Google Scholar
  47. St John C (1975) The brittle-to-ductile transition in pre-cleaved silicon single crystals. Philos Mag 32:1193–1212CrossRefGoogle Scholar
  48. Tahar M (1998) Applications de l’approche locale de la rupture fragile à l’acier 16MND5: Corrélation résilience-ténacité: probabilité de rupture bimodale (clivage et intergranulaire). PhD thesis, Ecole Nationale Supérieure des Mines de ParisGoogle Scholar
  49. Tanguy B (2001) Modélisation de l’essai Charpy par l’approche locale de la rupture. Application au cas de l’acier 16MND5 dans le domaine de la transition. Ph.D. thesis, Ecole des Mines Paris, FranceGoogle Scholar
  50. Tanguy B, Besson J, Piques R, Pineau A (2002a) Numerical modeling of Charpy V notch tests. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 461–468Google Scholar
  51. Tanguy B, Besson J, Piques R, Pineau A (2002b) Experimental analysis of Charpy V-notch specimens. In: François D, Pineau A (eds) From Charpy to present impact testing, Elsevier and ESIS, Amsterdam, pp 453–460Google Scholar
  52. Tanguy B, Besson J, Piques R, Pineau A (2005a) Ductile-to-brittle transition of a 508 steel characterized by Charpy impact test. Part I: Experimental results. Eng Fract Mech 72:49–72CrossRefGoogle Scholar
  53. Tanguy B, Besson J, Piques R, Pineau A (2005b) Ductile-to-brittle transition of A 508 steel characterized by Charpy impact test. Part II: Modelling of the Charpy transition curve. Eng Fract Mech 72:413–434CrossRefGoogle Scholar
  54. Tetelman A, McEvily AJ (1967) Fracture of structural materials. Wiley, New York/London/SidneyGoogle Scholar
  55. Toyoda M, Minami F, Matsuo T, Hagiwara Y, Inoue T (1991) Effect of work hardening properties of high strength steels on cleavage/ductile fracture resistance. Natl Meet Jpn Weld Soc 49:112–113Google Scholar
  56. Tvergaard V, Needleman A (1988) An analysis of the temperature and rate dependence of Charpy V notch energies for a high nitrogen steel. Int J Fract 37:197–215CrossRefGoogle Scholar
  57. Tvergaard V, Needleman A (2004) 3-D analyses of the effect of weld orientation in Charpy specimens. Eng Fract Mech 71:2179–2195CrossRefGoogle Scholar
  58. Wallin K (1989) The effect of ductile tearing on cleavage fracture probability in fracture toughness testing. Eng Fract Mech 32:523–531CrossRefGoogle Scholar
  59. Wallin K (1991a) Fracture toughness transition curve shape for ferritic structural steels. In: Theoh SH, Lee KH (eds) Proceedings of the joint FEFG. ICF international conference on fracture of engineering materials and structures. Elsevier, London, pp 83–88Google Scholar
  60. Wallin K (1991b) Statistical modelling of fracture in the ductile-to-brittle transition region. In: Blauel JG, Schwalbe K-H (eds) Defect assessment in components – fundamentals and applications. ESIS/ECF9. Mechanical Engineering Publication, London, pp 415–445Google Scholar
  61. Wallin K (1993) Statistical aspects of constraint with emphasis on testing and analysis of laboratory specimens in the transition region. In: Hackett EM, Schwalbe K-H, Dodds RH (eds) Constraint effects in fracture. ASTM STP 1171. American Society for Testing and Materials, Philadelphia, pp 264–288Google Scholar
  62. Wallin K, Nevasmaa P, Planman T, Valo M (2002a) Evolution of the Charpy V test from a quality control test to a materials evolution tool for structural integrity assessment. In: François D, Pineau A (eds) From Charpy to present impact testing. ESIS, 30. Elsevier, Amsterdam/London, pp 57–68Google Scholar
  63. Wallin K, Nevasmaa P, Laukkanen A (2002b) A fracture mechanics interpretation of the DNV brittle fracture criteria for ships and mobile offshore units. Fatigue Fract Eng Mater Struct 25:1033–1043CrossRefGoogle Scholar
  64. Wang GZ, Chen JH (2001) On location initiating cleavage fracture in pre-cracked specimens of low alloy steel and weld metal. Int J Fract 108:235–250CrossRefGoogle Scholar
  65. Williams ML (1954) Analysis of brittle behavior in ship plates. Symposium on effect of temperature on the brittle behaviour of metals with particular reference to low temperatures. ASTM STP 118:11–44Google Scholar
  66. Xia L, Cheng L (1997) Transition from ductile tearing to cleavage fracture: a cell-model approach. Int J Fract 87:289–306CrossRefGoogle Scholar
  67. Xia L, Shih CF (1995a) Ductile crack growth – I. A numerical study using computational cells with microstructurally based length scales. J Mech Phys Solids 43:233–259zbMATHCrossRefGoogle Scholar
  68. Xia L, Shih CF (1995b) Ductile crack growth – II. Void nucleation and geometry effects on macroscopic fracture behaviour. J Mech Phys Solids 43:1953–1981zbMATHCrossRefGoogle Scholar
  69. Xia L, Shih CF (1996) Ductile crack growth – III. Transition to cleavage fracture incorporating statistics. J Mech Phys Solids 44:603–639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dominique François
    • 1
  • André Pineau
    • 2
    • 3
  • André Zaoui
    • 3
    • 4
  1. 1.École Centrale de ParisParisFrance
  2. 2.École des Mines de Paris Paris Tech Centre des Matériaux UMR CNRSÉvry CedexFrance
  3. 3.Academy of EngineeringParisFrance
  4. 4.French Académie des SciencesParisFrance

Personalised recommendations