Mechanical Properties of Materials Considering Surface Effects

  • Holm Altenbach
  • Victor A. Eremeyev
  • Nikita F. Morozov
Conference paper
Part of the IUTAM Bookseries (closed) book series (IUTAMBOOK, volume 31)

Abstract

We discuss the influence of surface effects on the effective properties of materials such as the effective bending stiffness of plates or the stiffness of rods. The interest to the investigation of the surface effects is recently grown with respect to nanomechanics. The surface effects play an important role for such nanosized materials as films, nanoporous materials, etc. We consider two models of surface effects. The first one is based on the concept of surface stresses which are the generalization of the surface tension for solids. The second one (more classical approach) is based on the consideration of the thin surface layer with mechanical properties different from the bulk material. Within the framework of these models we present the effective stiffness properties of plates, shells, and nanoporous rods.

Keywords

Surface stresses Nanoshell Nanoplate Nanorod Nanoporous materials Effective stiffness 

References

  1. 1.
    Duan, H.L., Wang, J.X., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2008). ElsevierCrossRefGoogle Scholar
  2. 2.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57(4), 291–323 (1975)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Orowan, E.: Surface energy and surface tension in solids and fluids. Proc. R. Soc. Lond. A 316(1527), 473–491 (1970)CrossRefGoogle Scholar
  4. 4.
    Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Sol. 41(9), 1499–1514 (1993)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(7), 535–536 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011). doi:10.1002/zamm.201000214 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Linear theory of shells taking into account surface stresses. Doklady Phys. 54(12), 531–535 (2009)CrossRefGoogle Scholar
  8. 8.
    Altenbach, H., Eremeyev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45(3), 331–342 (2010)CrossRefGoogle Scholar
  9. 9.
    Dahmen, K., Lehwald, S., Ibach, H.: Bending of crystalline plates under the influence of surface stress — a finite element analysis. Surf. Sci. 446(1–2), 161–173 (2000)CrossRefGoogle Scholar
  10. 10.
    Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54(2), 98–100 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Guo, J.G., Zhao, Y.P.: The size-dependent elastic properties of nanofilms with surface effects. J. Appl. Phys. 98(7), 074306 (2005) (11 pp)CrossRefGoogle Scholar
  12. 12.
    Guo, J.G., Zhao, Y.P.: The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology 18(29), 295701 (2007). 6 ppCrossRefGoogle Scholar
  13. 13.
    Huang, D.W.: Size-dependent response of ultra-thin films with surface effects. Int. J. Sol. Struct. 45(2), 568–579 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Sol. Struct. 43(16), 4631–4647 (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Wang, Z.Q., Zhao, Y.P.: Self-instability and bending behaviors of nano plates. Acta Mech. Solida Sin. 22(6), 630–643 (2009)Google Scholar
  16. 16.
    Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48(2), 140–150 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhu, H.X., Wang, J.X., Karihaloo, B.: Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms. J. Mech. Mater. Struct. 4(3), 589–604 (2009)CrossRefGoogle Scholar
  18. 18.
    Duan, H.L., Wang, J.X., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Sol. 53(7), 1574–1596 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Eremeyev, V.A., Morozov, N.F.: The effective stiffness of nanoporous rod. Doklady Phys. 55(6), 279–282 (2010)MATHCrossRefGoogle Scholar
  20. 20.
    Wang, Y., Weissmüller, J., Duan, H.L.: Mechanics of corrugated surfaces. J. Mech. Phys. Solids 58(10), 1552–1566 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Christensen, R.M.: Mechanics of Composite Materials. Dover, New York (2005)Google Scholar
  22. 22.
    Jones, R.M.: Mechanics of Composite Materials. Taylor & Francis, Philadelphia (1999)Google Scholar
  23. 23.
    Schwarz, M. (ed.): Encyclopedia of Smart Materials, vol. 1, 2. Wiley, New York (2003)Google Scholar
  24. 24.
    Altenbach, H.: An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. Int. J. Sol. Struct. 37(25), 3503–3520 (2000)MATHCrossRefGoogle Scholar
  25. 25.
    Altenbach, H., Eremeyev, V.A.: Direct approach based analysis of plates composed of functionally graded materials. Arch. Appl. Mech. 78(10), 775–794 (2008)MATHCrossRefGoogle Scholar
  26. 26.
    Wang, J.X., Duan, H.L., Huang, Z.P., Karihaloo, B.L.: A scaling law for properties of nano-structured materials. Proc. R. Soc. Lond. A 462(2069), 1355–1363 (2006)MATHCrossRefGoogle Scholar
  27. 27.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Victor A. Eremeyev
    • 1
  • Nikita F. Morozov
    • 2
  1. 1.Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations