Confirmation of Hypothesis on Cable Properties for Cable-Driven Robots

  • Julien Alexandre dit Sandretto
  • Gilles Trombettoni
  • David Daney
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 7)


In the cable-driven robot studies, the mass and the elasticity of cables are often neglected, particularly for small-sized robots.Indeed, this assumption allows one to simplify the robot model and is used in control, design or calibration.We propose in this paper a method using interval analysis to judge the validity of this hypothesis in a given workspace, whatever are the cable characteristics, i.e., the applied tensions and the robot configuration.


Cable-driven robot Interval analysis 



This work was supported in part by the French National Research Agency (ANR) under grant 2009-SEGI-018 (CoGiRo ANR project) and in part by the Région Languedoc-Roussillon under grant 115217.


  1. 1.
    Andreas Pott, M.H.: A parallel implementation for the optimization of parallel kinematic machines under process requirements.In: EuCoMeS, Obergurgl (2006)Google Scholar
  2. 2.
    Bosscher, P., et al.: Cable-suspended robotic contour crafting system.Autom.Constr.17, 45–55 (2007)CrossRefGoogle Scholar
  3. 3.
    Chablat, D., et al.: An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines.Int.J.Robot.Res.23, 615–624 (2004)CrossRefGoogle Scholar
  4. 4.
    Gouttefarde, M., et al.: Determination of the wrench-closure workspace of 6-DOF parallel cable-driven mechanisms.In: Lennarcic, J., Roth, B.(eds.) Advances in Robot Kinematics, pp. 315–322.Springer, Dordrecht (2006)CrossRefGoogle Scholar
  5. 5.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches.Springer, Berlin (1996)MATHGoogle Scholar
  6. 6.
    Irvine, H.M.: Cable Structures.MIT, Cambridge (1981)Google Scholar
  7. 7.
    Jaulin, L., et al.: Applied Interval Analysis.Springer, London/New York (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Merlet, J.: Solving the forward kinematics of a gough-type parallel manipulator with interval analysis.Int.J.Robot.Res.23, 221–235 (2004)CrossRefGoogle Scholar
  9. 9.
    Merlet, J.: Parallel Robots, 2nd edn.Springer, Dordrecht (2006)MATHGoogle Scholar
  10. 10.
    Ming, A., Higuchi, T.: Study On multiple degree-of-freedom positioning mechanism using wires.Int.J.Jpn Soc.Precis.Eng.28, 235–242 (1994)Google Scholar
  11. 11.
    Moore, R.E.: Interval Analysis.Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  12. 12.
    Neumaier, A.: Interval Methods for Systems of Equations.Cambridge University Press, Cambridge/New York (1990)MATHGoogle Scholar
  13. 13.
    Skycam, Scholar
  14. 14.
    Tadokoro, S., et al.: A portable parallel manipulator for search and rescue at large-scale urban earthquakes and an identification algorithm for the installation in unstructured environments.In: Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ’99, vol. 2, pp. 1222–1227, Kyongju (1999)Google Scholar
  15. 15.
    Varziri, M.S., Notash, L.: Kinematic calibration of a wire-actuated parallel robot.Mech.Mach.Theory 42, 960–976 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Julien Alexandre dit Sandretto
    • 1
  • Gilles Trombettoni
    • 1
    • 2
  • David Daney
    • 1
  1. 1.Coprin INRIASophia Antipolis CedexFrance
  2. 2.IRIT, I3SUniversity of Nice–SophiaSophia Antipolis CedexFrance

Personalised recommendations