Scratching the Surface of Biology’s Dark Matter



Viruses are regarded as peripheral oddities in most ecological and evolutionary theory, as well as in the supporting field and laboratory work. This is a major mistake. After all, there are more of them, they reproduce more quickly, they evolve more rapidly, and they are part of every biome. Viruses, the most diverse biological entities on the planet, are also the least characterized in terms of their genetic, taxonomic, and functional diversity. They are the dark matter of the biological universe. In this chapter, we begin by counting viruses, then we estimate their diversity. With their vast numbers, great diversity, and rapid rates of mutation and recombination, viruses are exploring sequence space at a phenomenal rate. They exchange genes among themselves and with their hosts; they move genes globally from biome to biome. Everything viral is in rapid evolutionary and ecological movement, and this movement reverberates throughout the biosphere.


Dark Matter Viral Diversity Viral Genotype Phage Genome Microbial Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcami A, Lira SA (2010) Modulation of chemokine activity by viruses. Curr Opin Immunol 22(4):482–487PubMedCrossRefGoogle Scholar
  2. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, Nulton J, Mahaffy J, Rohwer F (2005) PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinform 6(1):41CrossRefGoogle Scholar
  3. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H (2006) The marine viromes of four oceanic regions. PLoS Biol 4(11):e368PubMedCrossRefGoogle Scholar
  4. Baas Becking, LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon (The Hague, the Netherlands)Google Scholar
  5. Baek JH, Lee SY (2006) Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett 264(1):104–109PubMedCrossRefGoogle Scholar
  6. Bench SR, Hanson TE, Williamson KE, Ghosh D, Radosovich M, Wang K, Wommack KE (2007) Metagenomic characterization of Chesapeake Bay virioplankton. Appl Environ Microbiol 73(23):7629PubMedCrossRefGoogle Scholar
  7. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 39:D32–D37PubMedCrossRefGoogle Scholar
  8. Biers EJ, Wang K, Pennington C, Belas R, Chen F, Moran MA (2008) Occurrence and expression of gene transfer agent (GTA) genes in marine bacterioplankton. Appl Environ Microbiol 74(10):2933–2939Google Scholar
  9. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99(22):14250–14255PubMedCrossRefGoogle Scholar
  10. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185(20):6220PubMedCrossRefGoogle Scholar
  11. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004a) Diversity and population structure of a near–shore marine–sediment viral community. Proc R Soc Lond B Biol Sci 271(1539):565CrossRefGoogle Scholar
  12. Breitbart M, Miyake JH, Rohwer F (2004b) Global distribution of nearly identical phage encoded DNA sequences. FEMS Microbiol Lett 236(2):249–256PubMedCrossRefGoogle Scholar
  13. Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159(5):367–373PubMedCrossRefGoogle Scholar
  14. Brüssow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108(1):13–16PubMedCrossRefGoogle Scholar
  15. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424PubMedCrossRefGoogle Scholar
  16. Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53(1):9–18PubMedCrossRefGoogle Scholar
  17. Cann AJ, Elizabeth Fandrich S, Heaphy S (2005) Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus Genes 30(2):151–156PubMedCrossRefGoogle Scholar
  18. Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, Zurita I, Breitbart M, Bartlett D, Azam F (2006) Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in southern California. FEMS Microbiol Lett 261:141–149Google Scholar
  19. Chapman AD (2009) Numbers of living species in Australia and the world. Australian Government, Department of the Environment, Water, Heritage and the Arts, CanberraGoogle Scholar
  20. Chee M, Satchwell S, Preddie E, Weston K, Barrell B (1990) Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344(6268):774–7PubMedCrossRefGoogle Scholar
  21. Clem R (2001) Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ 8(2):137PubMedCrossRefGoogle Scholar
  22. Culley AI, Lang AS, Suttle CA (2006) Metagenomic analysis of coastal RNA virus communities. Science 312(5781):1795PubMedCrossRefGoogle Scholar
  23. Daimon T, Katsuma S, Kang WK, Shimada T (2006) Comparative studies of Bombyx mori nucleopolyhedrovirus chitinase and its host ortholog, BmChi-h. Biochem Biophys Res Commun 345(2):825–833PubMedCrossRefGoogle Scholar
  24. Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14(6):1036PubMedCrossRefGoogle Scholar
  25. De Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did baas becking and beijerinck really say? Environ Microbiol 8(4):755–758PubMedCrossRefGoogle Scholar
  26. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Liu H, Furlan M, Wegley L, Chau B (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452(7185):340–343PubMedCrossRefGoogle Scholar
  27. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L (2008a) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632PubMedCrossRefGoogle Scholar
  28. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Thurber RV, Willis BL, Azam F, Knowlton N, Rohwer F (2008b) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3(2):e1584PubMedCrossRefGoogle Scholar
  29. Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF (2004) Tropism switching in bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481Google Scholar
  30. Ehrbar K, Hardt WD (2005) Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 5(1):1–9PubMedGoogle Scholar
  31. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066PubMedCrossRefGoogle Scholar
  32. Goldsmith DB, Crosti G, Dwivedi B, McDaniel LD, Varsani A, Suttle CA, Weinbauer MG, Sandaa RA, Breitbart M (2011) Development of phoH as a novel signature gene for assessing marine phage diversity. Appl Environ Microbiol 77(21):7730–7739Google Scholar
  33. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432CrossRefGoogle Scholar
  34. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8(11):504–508PubMedCrossRefGoogle Scholar
  35. Hodgson JJ, Arif BM, Krell PJ (2011) Interaction of Autographa californica multiple nucleopolyhedrovirus cathepsin protease progenitor (proV-CATH) with insect Baculovirus Chitinase as a mechanism for proV-CATH cellular retention. J Virol 85(8):3918PubMedCrossRefGoogle Scholar
  36. Hsieh YJ, Wanner BL (2010) Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 13(2):198–203PubMedCrossRefGoogle Scholar
  37. Hughes AL (2002) Evolution of inhibitors of apoptosis in baculoviruses and their insect hosts. Infect Genet Evol 2(1):3–10PubMedCrossRefGoogle Scholar
  38. Ikeda M, Yamada H, Ito H, Kobayashi M (2011) Baculovirus IAP1 induces caspase-dependent apoptosis in insect cells. J Gen Virol 92(11):2654–2663PubMedCrossRefGoogle Scholar
  39. Kim KH, Chang HW, Nam YD, Roh SW, Kim MS, Sung Y, Jeon CO, Oh HM, Bae JW (2008) Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol 74(19):5975–5985PubMedCrossRefGoogle Scholar
  40. Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in [alpha]-proteobacteria. Trends Microbiol 15(2):54–62PubMedCrossRefGoogle Scholar
  41. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. American Naturalist 125(4):585–602Google Scholar
  42. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438(7064):86–89Google Scholar
  43. López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcamí A (2009) High diversity of the viral community from an Antarctic lake. Science 326(5954):858PubMedCrossRefGoogle Scholar
  44. Mann NH, Cook A, Millard A, Bailey S, Clokie M (2003) Bacterial photosynthesis genes in a virus. Nature 424:741Google Scholar
  45. Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10(9):2277–2286PubMedCrossRefGoogle Scholar
  46. Mathews C (1994) An overview of the T4 developmental program. In: Karam J (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 1–8Google Scholar
  47. May RM (1988) How many species are there on earth? Science 241(4872):1441PubMedCrossRefGoogle Scholar
  48. McDaniel L, Breitbart M, Mobberley J, Long A, Haynes M, Rohwer F, Paul JH (2008) Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression. PLoS One 3(9):e3263PubMedCrossRefGoogle Scholar
  49. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15(6):589–594PubMedCrossRefGoogle Scholar
  50. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67(1):86PubMedCrossRefGoogle Scholar
  51. Miller JL et al (2008) Selective ligand recognition by a diversity-generating retroelement variable protein. PLoS Biology 6:e131Google Scholar
  52. Muir A, Lever A, Moffett A (2004) Expression and functions of human endogenous retroviruses in the placenta: an update. Placenta 25:S16–S25PubMedCrossRefGoogle Scholar
  53. Ng TFF, Duffy S, Polston JE, Bixby E, Vallad GE, Breitbart M (2011a) Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One 6(4):e19050PubMedCrossRefGoogle Scholar
  54. Ng TFF, Willner DL, Lim YW, Schmieder R, Chau B, Nilsson C, Anthony S, Ruan Y, Rohwer F, Breitbart M (2011b) Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PLoS One 6(6):e20579PubMedCrossRefGoogle Scholar
  55. O’Reilly DR, Brown MR, Miller LK (1992) Alteration of ecdysteroid metabolism due to baculovirus infection of the fall armyworm Spodoptera frugiperda: host ecdysteroids are conjugated with galactose. Insect Biochem Mol Biol 22(4):313–320CrossRefGoogle Scholar
  56. Park EJ, Burand JP, Yin CM (1993) The effect of baculovirus infection on ecdysteroid titer in gypsy moth larvae (Lymantria dispar). J Insect Physiol 39(9):791–796CrossRefGoogle Scholar
  57. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466(7304):334–338PubMedCrossRefGoogle Scholar
  58. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4(6):739PubMedCrossRefGoogle Scholar
  59. Rodriguez-Valera F, Martin-Cuadrado AB, Beltran Rodriguez-Brito LP, Thingstad TF, Forest Rohwer AM (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7(11):828–836PubMedCrossRefGoogle Scholar
  60. Rohrmann G (2008) The baculovirus replication cycle: effects on cells and insects. In: Baculovirus molecular biology, 2nd edn (Internet). National Center for Biotechnology, Bethesda, MD, USAGoogle Scholar
  61. Rohwer F (2003) Global phage diversity. Cell 113(2):141–141PubMedCrossRefGoogle Scholar
  62. Rohwer F, Edwards R (2002) The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol 184(16):4529–4535PubMedCrossRefGoogle Scholar
  63. Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M (2009) Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 11(11):2806–2820PubMedCrossRefGoogle Scholar
  64. Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70(10):5842PubMedCrossRefGoogle Scholar
  65. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74(13):4164PubMedCrossRefGoogle Scholar
  66. Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, Yooseph S, Zeidner G, Golden SS, Mackey SR (2007) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1(6):492–501PubMedCrossRefGoogle Scholar
  67. Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71(1):480PubMedCrossRefGoogle Scholar
  68. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(32):12115–12120PubMedCrossRefGoogle Scholar
  69. Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45(8):1697–1706CrossRefGoogle Scholar
  70. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3(5):e144PubMedCrossRefGoogle Scholar
  71. The IUCN Red List of Threatened Species (2011) The International Union for Conservation of Nature. Cited 21 Mar 2012
  72. Van Valen L (1974) Molecular evolution as predicted by natural selection. J Mol Evol 3:89–101Google Scholar
  73. Weynberg KD, Allen MJ, Ashelford K, Scanlan DJ, Wilson WH (2009) From small hosts come big viruses: the complete genome of a second Ostreococcus tauri virus, OtV 1. Environ Microbiol 11(11):2821–2839PubMedCrossRefGoogle Scholar
  74. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  75. Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49(1):19–23PubMedGoogle Scholar
  76. Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, Wommack KE (2008) Lysogenic virus–host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J 2(11):1112–1121PubMedCrossRefGoogle Scholar
  77. Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, Tammadoni S, Nosrat B, Conrad D, Rohwer F (2009a) Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 4(10):e7370PubMedCrossRefGoogle Scholar
  78. Willner D, Thurber RV, Rohwer F (2009b) Metagenomic signatures of 86 microbial and viral metagenomes. Environ Microbiol 11(7):1752–1766PubMedCrossRefGoogle Scholar
  79. Willner D, Furlan M, Schmieder R, Grasis JA, Pride DT, Relman DA, Angly FE, McDole T, Mariella RP, Rohwer F (2011a) Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci USA 108(Supplement 1):4547PubMedCrossRefGoogle Scholar
  80. Willner D, Haynes M, Furlan M, Hanson N, Kirby B, Lim Y, Rainey P, Schmieder R, Youle M, Conrad D (2011b) Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am J Respir Cell Mol Biol 46(2):127–131PubMedCrossRefGoogle Scholar
  81. Wilson W, Etten JL, Allen M (2009) The Phycodnaviridae: the story of how tiny giants rule the world. Curr Top Microbiol Immunol 328:1–42Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Rainbow RockOcean ViewUSA
  2. 2.Department of BiologySan Diego State UniversitySan DiegoUSA
  3. 3.DOE Joint Genome InstituteWalnut CreekUSA

Personalised recommendations