Koala Retrovirus Endogenisation in Action



Koala retrovirus (KoRV) is a unique example of a retroviral group ­currently undergoing the process of endogenisation. While endogenous retroviruses (ERVs) are ubiquitous elements in vertebrate genomes there is currently little understanding of the process by which they enter, modify and are modified by the organisms whose genomes they colonise. KoRV displays elements of both an endogenous and an infectious exogenous virus. It is variably present in different koala populations and has probably arisen from a recent host species jump from rodents. This review outlines the initial discovery of KoRV, it’s cross species infection potential and the exciting opportunities this virus provides to elucidate missing information on this fundamental process in mammalian evolution


  1. Arnoud F, Caporale M, Varela M, Biek R, Chessa B, Alberti A, Golder M, Mura M, Zhang Y, Yu L, Pereira F, DeMartini JC, Leymaster K, Spencer TE, Palmarini M (2007) A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 3:1716–1729Google Scholar
  2. Black SG, Arnaud F, Palmarini M, Spencer TE (2010) Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 64:255–264PubMedCrossRefGoogle Scholar
  3. Bonham L, Wolgamot G, Miller AD (1997) Molecular cloning of Mus dunni endogenous virus: an unusual retrovirus in a new murine viral interference group with a wide host range. J Virol 71:4463–4670Google Scholar
  4. Canfield PJ, Sabine JM, Love DN (1988) Virus particles associated with leukaemia in a koala. Aust Vet J 65:327–328PubMedCrossRefGoogle Scholar
  5. Denner J (2010) Endogenous retroviruses. In: Kurth R, Bannert N (eds) Retroviruses. Caister Academic Press, Norfolk, pp 35–70Google Scholar
  6. Denner J, Specke V, Karlas A, Chodnevskaja I, Meyer T, Moskalenko V, Kurth R, Ulrichs K (2008) No transmission of porcine endogenous retroviruses (PERVs) in a long-term pig to rat xenotransplantation model and no infection of immunosuppressed rats. Ann Transpl 13:20–31Google Scholar
  7. Fadel HJ, Peschla EM (2011) Retroviral restriction and dependency factors in primates and carnivores. Vet Immunol Immunopathol 143:179–189PubMedCrossRefGoogle Scholar
  8. Fiebig U, Hartmann MG, Bannert N, Kurth R, Denner J (2006) Transspecies transmission of the endogenous koala retrovirus. J Virol 80:5651–5654PubMedCrossRefGoogle Scholar
  9. Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF (2000) The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J Virol 74:4264–4272PubMedCrossRefGoogle Scholar
  10. Katzourakis A, Rambaut A, Pybus OG (2005) The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13:463–468PubMedCrossRefGoogle Scholar
  11. Kawakami TG, Buckley PM, DePaoli A, Noll W, Bustad LK (1973) Studies on the prevalence of type C virus associated with gibbon hematopoietic neoplasms. Comp Leuk Res 40:385–389Google Scholar
  12. Martin J, Hernoiu E, Cook J, Waugh O’Neill R, Tristem M (1999) Interclass transmission and pyletic host tracking in murine leukemia virus-related retroviruses. J Virol 73:2442–2449PubMedGoogle Scholar
  13. Martinez Barrio A, Ekerljung M, Jern P, Benachenhou F, Sperber GO, Bongcam-Rudloff E, Blomberg J, Andersson G (2011) The first sequenced carnivore genome shows complex host-endogenous retrovirus relationships. PLoS One 6:e19832CrossRefGoogle Scholar
  14. Miller AD, Bergholz U, Ziegler M, Stocking C (2008) Identification of the myelin protein plasmolipin as the cell entry receptor for Mus caroli endogenous retrovirus. J Virol 82:6862–6868PubMedCrossRefGoogle Scholar
  15. Miyazawa T, Shojima T, Yoshikawa R, Ohata T (2011) Isolation of koala retroviruses from koalas in Japan. J Vet Med Sci 73:65–70PubMedCrossRefGoogle Scholar
  16. Moyes D, Griffiths DJ, Venables PJ (2007) Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet 23:326–333PubMedCrossRefGoogle Scholar
  17. Narushima R, Horiuchi N, Usui T, Ogawa T, Takahashi T, Shimazaki T (2011) Experimental infection of dogs with a feline endogenous retrovirus RD-114. Acta Vet Scand 53:3PubMedCrossRefGoogle Scholar
  18. Oliveira NM, Satija H, Kouwenhoven IA, Eiden MV (2007) Changes in viral protein function that accompany retroviral endogenization. Proc Natl Acad Sci USA 104:17506–17511PubMedCrossRefGoogle Scholar
  19. Pask AJ, Papenfuss AT, Ager EI, McColl KA, Speed TP, Renfree MB (2009) Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 10:R1PubMedCrossRefGoogle Scholar
  20. Reitz MS, Wong-Staal F, Hasletine WA, Kleid DG, Trainor CD, Gallagher RE, Gallo RC (1979) Gibbon Ape leukemia virus-Hall’s Island: new strain of gibbon Ape leukemia virus. J Virol 29:395–400PubMedGoogle Scholar
  21. Roca AL, Nash WG, Menninger JC, Murphy WJ, O’Brien SJ (2005) Insertional polymorphisms of endogenous feline leukemia viruses. J Virol 79:3979–3986PubMedCrossRefGoogle Scholar
  22. Rosenburg N, Jolicouer P (1997) Retroviral pathogenesis. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Springs Harbour Laboratory Press, New York, pp 457–587Google Scholar
  23. Sakuma T, Tonne JM, Malcolm JA, Thatava T, Ohmine S, Peng KW, Ikeda Y (2012) Long-term infection and vertical transmission of a gammaretrovirus in a foreign host species. PLoS One 7:e29682PubMedCrossRefGoogle Scholar
  24. Simmons G (2011) The epidemiology and pathegenesis of Koala retrovirus. PhD thesis, School of Veterinary Science, University of Queensland, BrisbaneGoogle Scholar
  25. Stocking C, Kozak CA (2008) Murine endogenous retroviruses. Cell Mol Life Sci 65:3383–3398PubMedCrossRefGoogle Scholar
  26. Tandon R, Cattori V, Willi B, Lutz H, Hofmann-Lehmann R (2008) Quantification of endogenous and exogenous feline leukemia virus sequences by real-time PCR assays. Vet Immunol Immunopathol 123:129–133PubMedCrossRefGoogle Scholar
  27. Tarlinton R, Meers J, HangerJ YP (2005) Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol 86:783–787PubMedCrossRefGoogle Scholar
  28. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442:79–81PubMedCrossRefGoogle Scholar
  29. Theilen GH, Gould D, Fowler M, Dungworth DL (1971) C-type virus in tumour tissue of a Wooly monkey (Lagothrix spp.) with fibrosarcoma. J Natl Cancer Inst 47:881–889PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Veterinary Medicine and ScienceUniversity of NottinghamLoughboroughUK

Personalised recommendations