Monitoring, Modelling and Forecasting of the Pollen Season



The section about monitoring covers the development of phenological networks, remote sensing of the season cycle of the vegetation, the emergence of the science of aerobiology and, more specifically, aeropalynology, pollen sampling instruments, pollen counting techniques, applications of aeropalynology in agriculture and the European Pollen Information System. Three data sources are directly related with aeropalynology: phenological observations, pollen counts and remote sensing of the vegetation activity. The main future challenge is the assimilation of these data streams into numerical pollen forecast systems. Over the last decades consistent monitoring efforts of various national networks have created a wealth of pollen concentration time series. These constitute a nearly untouched treasure, which is still to be exploited to investigate questions concerning pollen emission, transport and deposition. New monitoring methods allow measuring the allergen content in pollen. Results from research on the allergen content in pollen are expected to increase the quality of the operational pollen forecasts.

In the modelling section the concepts of a variety of process-based phenological models are sketched. Process-based models appear to exhaust the noisy information contained in commonly available observational phenological and pollen data sets. Any additional parameterisations do not to improve model quality substantially. Observation-based models, like regression models, time series models and computational intelligence methods are also briefly described. Numerical pollen forecast systems are especially challenging. The question, which of the models, regression or process-based models is superior, cannot yet be answered.


Aerobiology Aeropalynology Phenology Pollen modelling Phenological modelling 

List of Acronyms


French Association for Ragweed Study


Artificial Neural Networks


Autoregressive Integrated Moving Average


Advanced Very High Resolution Radiometer


Classification and Regression Trees


COST Action 725: Establishing a European Phenological Data Platform for Climatological Applications


Commission for Agrometeorology


Digital Elevation Model


Deutscher Wetterdienst


European Aeroallergen Network


Enzyme-linked Immunosorbent Assay


The Network of European Meteorological Services


Global Inventory Modeling and Mapping Studies


Computational Intelligence


International Association for Aerobiology


International Biological Programme


Industrial Environment and Risks National Institute


International Phenological Garden

Landsat TM

Landsat Thematic Mapper, Satellite


Look Up Table


Moderate Resolution Imaging Spectroradiometer


Normalised Difference Vegetation Index


National Hydrometeorological Services


National Oceanic and Atmospheric Administration


Polymerase Chain Reaction


Pan European Phenological Database


Particulate Matter


Root Mean Square Error


Satellite Pour l’Observation de la Terre


Self-Organising Maps


Support Vector Machines


Temperature Sum Model


Use and Management of Biological Resources


World Climate Data and Monitoring Programme


World Climate Programme


Wide-Issue Bioaerosol Spectrometer


World Meteorological Organisation


  1. Ahas, R., Aasa, A., Menzel, A., Fedotova, V. G., & Scheifinger, H. (2002). Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.Google Scholar
  2. Aizenberg, V., Reponen, T., Grinshpun, S. A., & Willeke, K. (2000). Performance if Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. American Industrial Hygiene Association Journal, 61, 855–864.Google Scholar
  3. Alba, F., & Díaz de la Guardia, C. (1998). The effect of air temperature on the starting dates of the Ulmus, Platanus and Olea pollen season in the SE Iberian Peninsula. Aerobiologia, 14, 191–194.Google Scholar
  4. Alcalá, A. R., & Barranco, D. (1992). Prediction of flowering time in olive for the Córdoba Olive collection. HortScience, 27(11), 1205–1207.Google Scholar
  5. Alcazar, P., Carinanos, P., de Castro, C., Guerra, F., Moreno, C., Dominguez Vilchez, E., & Galán, C. (2004). Airborne plane tree (Platanus hispanica) pollen distribution in the city of Cordoba, south-western Spain and possible implications on pollen allergy. Journal of Investigational Allergology and Clinical Immunology, 14(3), 238–243.Google Scholar
  6. Andersen, A. A. (1958). New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.Google Scholar
  7. Antepara, I., Fernandez, J. C., Gamboa, P., Jauregui, I., & Miguel, F. (1995). Pollen allergy in the Bilbao area (European Atlantic seaboard climate): Pollination forecasting methods. Clinical and Experimental Allergy, 25, 133–140.Google Scholar
  8. Aono, Y., & Kazui, K. (2008). Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology, 28, 905–914. doi: 10.1002/joc.1594.Google Scholar
  9. Arizmendi, C. M., Sanchez, J. R., Ramos, N. E., & Ramos, G. I. (1993). Time-series prediction with neural nets – applications to airborne pollen forecasting. International Journal of Biometeorology, 37(3), 139–144.Google Scholar
  10. Autio, J., & Hicks, S. (2004). Annual variations in pollen deposition and meteorological conditions on the fell Aakenusrunturi in northern Finland: Potential for using fossil pollen as a climate proxy. Grana, 43, 31–47.Google Scholar
  11. Aznarte, J. L., Nieto Lugilde, D., Benítez, J. M., Alba Sánchez, F., & de Linares Fernández, C. (2007). Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Systems with Applications, 32, 1218–1225.Google Scholar
  12. Badeck, F. W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., & Sitch, S. (2004). Responses of spring phenology to climate change. New Phytologist, 162(2), 295–309.Google Scholar
  13. BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. Aylesford: The British Aerobiology Federation. 1995. ISBN 0-9525617-0-0.Google Scholar
  14. Bertin Technologies (2007). Continuous cyclonic air sampler for outdoor air monitoring. Accessed 5 October/2010.
  15. Bonton, P., Boucher, A., Thonnat, M., Tomczak, R., Hidalgo, P. J., Belmonte, J., & Galán, C. (2001). Colour image in 2D and 3D microscopy for the automation of pollen rate measurement. Image Analysis and Stereology, 20, 527–532.Google Scholar
  16. Boucher, A., Hidalgo, P. J., Thonnat, M., Belmonte, J., Galán, C., Bonton, P., & Tomczak, R. (2002). Development of a semi-automatic system for pollen recognition. Aerobiologia, 18, 195–201.Google Scholar
  17. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time-series analysis: Forecasting and control. Upper Saddle River, NJ: Prentice-Hall International.Google Scholar
  18. Bringfelt, B., Engstrom, I., & Nilsson, S. (1982). An evaluation of some models to predict airborne pollen concentration from meteorological conditions in Stockholm, Sweden. Grana, 21, 59–64.Google Scholar
  19. Bryant, W. M., Jr. (1989). Yearbook of science and future (pp. 92–111). Chicago: Encyclopaedia Britannica, Inc.Google Scholar
  20. Buters, J. T., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., & Boere, A. J. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65, 850–858.Google Scholar
  21. Carinanos, P., Emberlin, J., Galán, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16, 339–346.Google Scholar
  22. Chen, C., Hendriks, E. A., Duin, R. P., Reiber, J. H. C., Hiemstra, P. S., de Weger, L. A., & Stoel, B. C. (2006). Feasibility study for an automatic recognition system for three relevant allergenic pollen, grass, birch and mugwort. Aerobiologia, 22, 275–284.Google Scholar
  23. Chmielewski, F.-M. (2008). The international phenological gardens. In J. Nekovar, E., Koch, E., Kubin, P., Nejedlik, T., Sparks, & F. Wielgolaski (Eds.), The History and current status of plant phenology in Europe. COST Action 725 (182 p.).Brussels: COST Office.Google Scholar
  24. Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.Google Scholar
  25. Chuine, I., & Belmonte, J. (2004). Improving prophylaxis for pollen allergies: Predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana, 43, 65–80.Google Scholar
  26. Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperature zone trees using simulated annealing. Plan, Cell and Environment, 21, 455–466.Google Scholar
  27. Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant Cell and Environment, 22, 1–13.Google Scholar
  28. Chuine, I., Belmonte, J., & Mignot, A. (2000). A modelling analysis of the genetic variation of phenology between tree populations. Journal of Ecology, 80, 561–570.Google Scholar
  29. Chuine, I., Kramer, K., & Hänninen, H. (2003). Plant development models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (p. 564). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  30. Chytry, M., & Tichy, L. (1998). Phenological mapping in a topographically complex landscape by combining field survey with an irradiation model. Applied Vegetation Science, 1, 225–232.Google Scholar
  31. Clary, J., Savé, R., Biel, C., & de Herralde, F. (2004). Water relations in competitive interactions of Mediterranean grasses and shrubs. Annals of Applied Biology, 144(2), 149–155.Google Scholar
  32. Clot, B. (1998). Forecast of the Poaceae pollination in Zurich and Basel (Switzerland). Aerobiologia, 14, 267–268.Google Scholar
  33. Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29.Google Scholar
  34. Comtois, P., Alcázar, P., & Neron, D. (1999). Pollen count statistics and its relevance to precision. Aerobiologia, 15, 19–28.Google Scholar
  35. Cour, P. (1974). Nouvelles techniques de détection des flux et retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et spores XVI, 1, 103–141.Google Scholar
  36. Cox, C. S., & Wathes, C. M. (1995). Bioaerosol handbook (621 p.). Boca Raton, FL: Lewis Publisher.Google Scholar
  37. Crepinsek, Z., Kaifez-Bogataj, L., & Bergant, K. (2006). Modelling of weather variability effect on phytophenology. Ecological Modelling, 194, 256–265.Google Scholar
  38. Cristofolini, F., & Gottardini, E. (2000). Concentration of airborne pollen of Vitis vinifera L. and yield forecast: A case study at S. Michele all’Adige, Trento, Italy. Aerobiologia, 16, 125–129.Google Scholar
  39. Damialis, A., Gioulekas, D., Lazopoulou, C., Balafoutis, C., & Vokou, D. (2005). Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. International Journal of Biometeorology, 49, 139–145.Google Scholar
  40. Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021.Google Scholar
  41. Davies, R. R., & Smith, L. P. (1973). Forecasting the start and severity of the hay fever season. Clinical Allergy, 3, 263–267.Google Scholar
  42. Degaudenzi, M. E., & Arizmendi, C. M. (1998). Wavelet based fractal analysis of airborne pollen. Physical Review E, 59(2), 6569–6573.Google Scholar
  43. De Linares, C., Nieto-Lugilde, D., Alba, F., Díaz de la Guardia, C., Galán, C., & Trigo, M. M. (2007). Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in S Spain. Clinical & Experimental Allergy, 37(1), 125–132.Google Scholar
  44. De Linares, C., Días de la Guardia, C., Nieto-Lugilde, D., & Alba, F. (2010). Airborne study of grass allergen (Lol p 1) in different-sized particles. International Archives of Allergy and Immunology, 152(1), 49–57.Google Scholar
  45. DeLurgio, S. A. (1998). Forecasting principles and applications. New York: McGraw-Hill.Google Scholar
  46. Demokritou, P., Kavouras, I. G., Ferguson, S. T., & Koutrakis, P. (2002). Development of a high volume cascade impactor for toxicological and chemical characterisation studies. Aerosol Science and Technology, 36, 925–933.Google Scholar
  47. Dominguez, E., Galán, C., Villamandos, F., & Infante, F. (1991). Handling and evaluation of the data from the aerobiological sampling. Monografías REA/EAN, 1, 131–141.Google Scholar
  48. Driessen, M., & Moelands, M. (1985). Estimation of the commencement of the grass pollen season and its prediction by means of the phenological method. Acta Botanica Neerlandica, 34, 131. Abstract.Google Scholar
  49. Driessen, M., Van Herpen, A., Moelands, M., & Spiekma, M. (1989). Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana, 28, 37–44.Google Scholar
  50. Emberlin, J., & Baboonian, C. (1995). The development of a new method for sampling airborne particles for immunological analysis. Paper presented at XVI European Congress of Allergy and Clinical Immunology, ECACI 95 (pp. 39–43). Madrid: Monduzzi, Bologna.Google Scholar
  51. Emberlin, J., Savage, M., & Woodman, R. (1993a). Annual variations in Betula pollen seasons in London 1961–1990. Grana, 32, 359–363.Google Scholar
  52. Emberlin, J., Savage, M., & Jones, S. (1993b). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.Google Scholar
  53. Emberlin, J., Jones, S., Bailey, J., Caulton, E., Corden, J., Dubbets, S., Evans, J., McDonagh, N., Millington, W., Mullins, J., Russel, R., & Spencer, T. (1994). Variation in the start of the grass pollen season at selected sites in the United Kingdom. 1987–1992. Grana, 33, 94–99.Google Scholar
  54. Emberlin, J., Mullins, J., Corden, J., Jones, S., Millington, W., Brooke, M., & Savage, M. (1999). Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.Google Scholar
  55. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51, 181–191.Google Scholar
  56. Erbas, B., Chang, J. H., Dharmage, S., Ong, E. K., Hyndman, R., Newbigin, E., & Abramson, M. (2007). Do levels of airborne grass pollen influence asthma hospital admissions? Clinical and Experimental Allergy, 37(11), 1641–1647.Google Scholar
  57. Estrella, N., Menzel, A., Kramer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: Analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51, 49–59.Google Scholar
  58. Férnández-González, D., Valencia-Barrera, R. M., Vega, A., Díaz de la Guardia, C., Trigo, M. M., Cariñanos, P., Guardia, A., Pertiñez, C., & Rodríguez-Rajo, F. J. (1999). Analysis of grass pollen concentrations in the atmosphere of several Spanish sites. Pollen, 10, 123–132.Google Scholar
  59. Fiorina, A., Scordamaglia, A., Guerra, L., & Passalacqua, G. (2003). Aerobiologic diagnosis of Brassicaceae-induced asthma. Allergy, 58, 829–830.Google Scholar
  60. Fotiou, C., Damialis, A., Krigas, N., Halley, J. M., & Vokou, D. (2011). Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: Impacts of environmental factors. International Journal of Biometeorology, 55, 35–50.Google Scholar
  61. Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example form Switzerland for the period 1969–2006. International Journal of Biometeorology, 52, 667–674.Google Scholar
  62. Frenguelli, G. (1998). The contribution of aerobiology to agriculture. Aerobiologia, 14, 95–100.Google Scholar
  63. Frenguelli, G., & Bricchi, E. (1998). The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia, 14, 39–44.Google Scholar
  64. Frenguelli, G., Bricchi, E., Romano, B., Mincigrucci, G., & Spieksma, F. Th. M. (1989). A predictive study on the beginning of the pollen season for Gramineae and Olea europaea L. Aerobiologia, 5, 64–70.Google Scholar
  65. Galán, C., Emberlin, J., Dominguez-Vilches, E., Bryant, R. H., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana, 34, 189–198.Google Scholar
  66. Galán, C., Fuillerat, M. J., Comtois, P., & Dominguez-Vilches, E. (1998). A predictive study of Cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiologia, 14, 195–199.Google Scholar
  67. Galán, C., Alcazar, P., Cariñanos, P., García-Mozo, H., & Dominguez-Vilches, E. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology, 43, 191–195.Google Scholar
  68. Galán, C., García-Mozo, H., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2001a). The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. International Journal of Biometeorology, 45(1), 8–12.Google Scholar
  69. Galán, C., Carinanos, P., García-Mozo, H., Alcazar, P., & Dominguez-Vilches, E. (2001b). Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. International Journal of Biometeorology, 45, 59–93.Google Scholar
  70. Galán, C., Vazquez, L., García-Mozo, H., & Dominguez-Vilches, E. (2004). Forecasting olive (Olea europea) crop yield based on pollen emission. Field Crops Research, 86, 43–51.Google Scholar
  71. Galán, C., García-Mozo, H., Vazquez, L., Ruiz-Valenzuela, L., Díaz de la Guardia, C., & Trigo-Perez, M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several places of Andalusia region and the effect of the expected future climate change. International Journal of Biometeorology, 49(3), 184–188.Google Scholar
  72. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish Aerobiology Network (REA) management and quality manual. Cordoba: Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.Google Scholar
  73. Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez-Vilches, E. (2008). Modelling olive (Olea europaea L.) crop yield in Andalusia Region, Spain. Agronomy Journal, 100(1), 98–104.Google Scholar
  74. García-Mozo, H., Galán, C., Gomez-Casero, M. T., & Dominguez-Vilches, E. (2000). A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Cordoba (South West Spain). Grana, 39, 194–199.Google Scholar
  75. García-Mozo, H., Hidalgo, P. J., Galán, C., & Gomez-Casero, M. T. (2001). Catkin frost damage in Mediterranean cork-oak (Quercus suber L.). Israel Journal of Plant Sciences, 49, 41–47.Google Scholar
  76. García-Mozo, H., Galán, C., Aira, M. J., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutierrez, A. M., Rodriguez, F. J., Trigo, M. M., & Dominguez-Vilches, E. (2002). Modelling start of oak pollen season in different climatic zones in Spain. Agricultural and Forest Meteorology, 110, 247–257.Google Scholar
  77. García-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., Gutiérrez, M., Aira, M. J., Roure, J. M., Ruiz, L., Trigo, M. M., & Domínguez-Vilches, E. (2006). Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13, 209–224.Google Scholar
  78. García-Mozo, H., Perez-Badía, R., & Galán, C. (2007a). Aerobiological and meteorological factors influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia, 24(1), 13–18.Google Scholar
  79. García-Mozo, H., Gómez-Casero, M. T., Dominguez-Vilches, E., & Galán, C. (2007b). Influence of pollen emission and weather-related factors on variations in holm-oak (Quercus ilex subsp. ballota) acorn production. Environmental and Experimental Botany, 61, 35–40.Google Scholar
  80. García-Mozo, H., Chuine, I., Aira, M. J., Belmonte, J., Bermejo, D., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Rodríguez-Rajo, J., Ruiz, L., Trigo, M. M., Tormo, R., Valencia, R., & Galán, C. (2008). Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agricultural and Forest Meteorology, 148, 372–380.Google Scholar
  81. García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., Elvira, B., Gutiérrez, M., Jato, V., Silva, I., Trigo, M. M., Valencia, R., & Chuine, I. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agriculture and Forest Meteorology, 149, 256–262.Google Scholar
  82. Gerad-Peeters, A. (1998). Cumulative temperatures for prediction of the beginning of ash (Fraxinus excelsior L.) pollen season. Aerobiologia, 14, 375–381.Google Scholar
  83. Goldberg, C., Buch, H., Moseholm, L., & Weeke, E. V. (1988). Airborne pollen records in Denmark, 1977–1986. Grana, 27, 209–217.Google Scholar
  84. Govindaraju, D. R. (1988). The relationship between dispersal ability and levels of gene flow in plants. Oikos, 52, 31–35.Google Scholar
  85. Graham, J. A. H., Pavlicek, P. K., Sercombe, J. K., Xavier, M. L., & Tovey, E. R. (2000). The nasal air sampler: A device for sampling inhaled aeroallergens. Annals of Allergy, Asthma, & Immunology, 84, 599–604.Google Scholar
  86. Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of Pm10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40(7), 1216–1230.Google Scholar
  87. Guyot, G., Gugon, D., & Riom, J. (1989). Factors affecting the spectral response of forest canopies: A review. Geocarta International, 3, 43–60.Google Scholar
  88. Halley, J. M., & Inchausti, P. (2004). The increasing importance of 1/f-noises as models of ecological variability. Fluctuation and Noise Letters, 4, R1–R26.Google Scholar
  89. Hänninen, H. (1995). Effects of climatic change on trees from cool and temperate regions: An ecophyisological approach to modelling of budburst phenology. Canadian Journal of Botany, 73, 183–199.Google Scholar
  90. Haykin, S. (1999). Neural networks, a comprehensive foundation. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  91. Helbig, N., Vogel, B., Vogel, H., & Fiedler, F. (2004). Numerical modelling of pollen dispersion on the regional scale. Aerobiologia, 3, 3–19.Google Scholar
  92. Hidalgo, P. J., Mangin, A., Galán, C., Hembise, O., Vazquez, L. M., & Sanchez, O. (2002). An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia, 18, 23–31.Google Scholar
  93. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.Google Scholar
  94. Høgda, K. A., Karlsen, S. R., Solheim, I., Tømmervik, H., & Ramfjord, H. (2003). The start dates of birch pollen seasons in Fennoscandia studied by NOAA AVHRR NDVI data. Paper presented at geoscience and remote sensing symposium, 2002. IGARSS’02. IEEE International, 6, 3299–3301.Google Scholar
  95. Holben, B. N. (1986). Characteristics of maximum-value composite images for temporal AVHRR data. International Journal of Remote Sensing, 7, 1435–1445.Google Scholar
  96. Hudson, I. L., Kim, S. W., & Keatley, M. R. (2010). Modelling the flowering of four Eucalypt species using new mixture transition distribution models. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht/Heidelberg/London/New York: Springer. 521 p.Google Scholar
  97. Huynen, M., Menne, B., Behrendt, H., Bertollini, R., Bonini, S., Brandao, R., Brown-Fährlander, C., Clot, B., D’Ambrosio, C., De Nuntiis, P., Ebi, K. L., Emberlin, J., Orbanne, E. E., Galán, C., Jäger, S., Kovats, S., Mandrioli, P., Martens, P., Menzel, A., Nyenzi, B., Rantio Lehtimäki, A., Ring, J., Rybnicek, O., Traidl-Hoffmann, T., Van Vliet, A., Voigt, T., Weiland, S., & Wickman, M. (2003). Phenology and human health: Allergic disorders. Report of a WHO meeting, Rome, Italy.Google Scholar
  98. Iglesias, I., Rodriguez-Rajo, F. J., & Mendez, J. (2007). Behavior of Platanus hispanica pollen, an important spring aeroallergen in northwestern Spain. Journal of Investigational Allergology and Clinical Immunology, 17(3), 145–156.Google Scholar
  99. Ihne, E. (1885). Karte der Aufblühzeit von Syringa vulgaris in Europa. Botanisches Centralblatt, 21, 85–88, 116–121, 150–155.Google Scholar
  100. Jato, V., Frenguelli, G., Rodríguez, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain. Grana, 39, 240–245.Google Scholar
  101. Jeanneret, F., & Rutishauser, T. (2010). Phenology for topoclimatological surveys and large-scale mapping. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht/Heidelberg/London/New York: Springer. 521 p.Google Scholar
  102. Kapyla, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.Google Scholar
  103. Karatzas, K., & Kaltsatos, S. (2007). Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory, 15(10), 1310–1319.Google Scholar
  104. Karlsen, S. R., Elvebakk, A., Høgda, K. A., & Johansen, B. (2006). Satellite based mapping of the growing season and bioclimatic zones in Fennoscandia. Global Ecology and Biogeography, 15, 416–430.Google Scholar
  105. Karlsen, S. R., Solheim, I., Beck, P. S. A., Høgda, K. A., Wielgolaski, F. E., & Tømmervik, H. (2007). Variability of the start of the growing season in Fennoscandia, 19822002. International Journal of Biometeorology, 51, 513–524. doi: 10.1007/s00484-007-0091-x.Google Scholar
  106. Karlsen, S. R., Ramfjord, H., Høgda, K. A., Johansen, B., Danks, F. S., & Brobakk, T. E. (2009a). A satellite-based map of onset of birch (Betula) flowering in Norway. Aerobiologia, 25, 15–25.Google Scholar
  107. Karlsen, S. R., Høgda, K. A., Ramfjord, H., Brobakk, T. E., & Johansen, B. (2009b). Use of satellite data in near real-time monitoring of the birch flowering in Norway. Paper presented at the 12th Nordic Symposium on Aerobiology, Copenhagen, Denmark, August 28–30.Google Scholar
  108. Kawashima, S., & Takahashi, Y. (1995). Modelling and simulation of mesoscale dispersion processes for airborne cedar pollen. Grana, 34, 142–150.Google Scholar
  109. Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., & Nakamura, K. (2007). An algorithm and a device for counting airborne pollen automatically using laser optics. Atmospheric Environment, 41, 7987–7993.Google Scholar
  110. Kinnear, P. R., & Gray, C. D. (1999). SPSS for Windows Made Simple. Padstow: T.J. International.Google Scholar
  111. Koch, E. (2010). Global framework for data collection – data bases, data availability, future networks, online databases. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: Methods for environmental and climate change analysis. Dordrecht: Springer. 522 p.Google Scholar
  112. Koch, E., Dittmann, E., Lipa, W., Menzel, A., & van Vliet, A. (2005). COST 725 Establishing a European phenological data platform for climatological purposes. Annalen der Meteorologie 41(2), 554–558. DWD.Google Scholar
  113. Koch, E., Demarée, G., Lipa, W., Zach, S., & Zimmermann, K. (2008). History of international phenology networks. In J. Nekovar, E. Koch, E. Kubin, P. Nejedlik, T. Sparks, & F.-E. Wielgolaski (Eds.), The history and current status of plant phenology in Europe – COST Action 725: Establishing a European Data Platform for Climatological Purposes. Sastamala: Vammalan Kirjapaino Oy, COST Office. ISBN 978-951-40-2091-9.Google Scholar
  114. Kramer, K. (1994). A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant, Cell and Environment, 17, 367–377.Google Scholar
  115. Kramer, K. (1995). Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming. Plant, Cell and Environment, 18, 93–104.Google Scholar
  116. Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., & Cawley, G. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37(32), 4539–4550.Google Scholar
  117. Laaidi, M. (2001a). Forecasting the start of the pollen season of Poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 1–7.Google Scholar
  118. Laaidi, M. (2001b). Regional variations in the pollen season of Betula in Burgundy: Two models for predicting the start of the pollination. Aerobiologia, 17, 247–254.Google Scholar
  119. Laaidi, M., Thibaudon, M., & Besancenot, J.-P. (2003). Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). International Journal of Biometeorology, 48, 65–73.Google Scholar
  120. Landsmeer, S. H., Hendriks, E. A., de Weger, L. A., Reiber, J. H., & Stoel, B. C. (2009). Detection of pollen grains in multifocal optical microscopy images of air samples. Microscopy Research and Technique, 72, 424–430.Google Scholar
  121. Levetin, E., Rogers, C. A., & Hall, S. A. (2000). Comparison of pollen sampling with a Burkard Spore Trap and a Tauber Trap in a warm temperate climate. Grana, 39, 294–302.Google Scholar
  122. Lillesand, T. M., & Kiefer, R. (1994). Remote sensing and image interpretation (3rd ed.). New York: Wiley.Google Scholar
  123. Linkosalo, T. (1999). Regularities and patterns in the spring phenology of some boreal trees. Silva Fennica, 33, 237–245.Google Scholar
  124. Linkosalo, T. (2000). Mutual regularity of spring phenology of some boreal tree species: Predicting with other species and phenological models. Canadian Journal of Forest Research, 30, 667–673.Google Scholar
  125. Linkosalo, T., Häkkinen, R., & Hänninen, H. (2006). Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 26, 1165–1172.Google Scholar
  126. Linkosalo, T., Lappalainen, H. K., & Hari, P. (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Phyisology, 28, 1873–1882.Google Scholar
  127. Linkosalo, T., Häkkinen, R., Terhivuo, J., Tuomenvirta, H., & Hari, P. (2009). The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology, 149(3–4), 453–461.Google Scholar
  128. Linkosalo, T., Ranta, H., Oksanen, A., Siljamo, P., Luomajoki, A., Kukkonen, J., & Sofiev, M. (2010). A double-threshold temperature sum model for predicting the flowering duration and relative intensity of Betula pendula and B. pubescens. Agricultural and Forest Meteorology, 150, 1579–1584.Google Scholar
  129. Litschauer, R. (2003). Untersuchungen zum Reproduktionspotential im Bergwald. FBVA, 130, 79–85.Google Scholar
  130. Makinen, Y. (1981). Random sampling in the study of microscopic slides. Reports from the Aerobiological Laboratory, University of Turku, 5, 27–43.Google Scholar
  131. Makra, L., Juhasz, M., Borsos, E., & Beczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in southern Hungary. International Journal of Biometeorology, 49, 37–47.Google Scholar
  132. Mandrioli, P. (1990). The Italian Aeroallergen Network. Sampling and counting method. Aerobiologia, 6, 5–7.Google Scholar
  133. Mandrioli, P., & Ariatti, A. (2001). Aerobiology: Future course of action. Aerobiologia, 17, 1–10.Google Scholar
  134. Marletto, V., Puppi Branzi, G., & Sirotti, M. (1992). Forecasting flowering dates of lawn species with air temperatures: Application boundaries of the linear approach. Aerobiologia, 8, 75–83.Google Scholar
  135. Mendez, J., Comptois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia, 21, 115–123.Google Scholar
  136. Menzel, A. (1997). Phänologie von Waldbäumen unter sich ändernden Klimabedingungen – Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte 164/1997 (147 p.). Forstwissenschaftliche Fakultät der Universität München und der Bayerischen Landesanstalt für Wald und Forstwirtschaft.Google Scholar
  137. Migliavacca, M., Cremonese, E., Colombo, R., Busetto, L., Galvagno, M., Ganis, L., Meroni, M., Pari, E., Rossini, M., Siniscalco, C., & Morra di Cella, U. (2008). European larch phenology in the Alps: Can we grasp the role of ecological factors by combining field observations and inverse modelling? International Journal of Biometeorology, 52(7), 587–605.Google Scholar
  138. Moriondo, M., Orlandini, S., De Nuntiis, P., & Mandrioli, P. (2001). Effect of agrometeorological parameters on the phenology of pollen emission and production of olive trees (Olea europea L.). Aerobiologia, 7, 225–232.Google Scholar
  139. Moseholm, L., Weeke, E. R., & Petersen, B. N. (1987). Forecast of pollen concentrations of Poaceae (grasses) in the air by time series analysis. Pollen et Spores, 19(2–3), 305–322.Google Scholar
  140. Mullins, J., & Emberlin, J. (1997). Sampling pollen. Journal of Aerosol Science, 28, 365–370.Google Scholar
  141. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.Google Scholar
  142. Nekovar, J., Koch, E., Kubin, E., Nejedlik, P., Sparks, T., & Wielgolaski, F. (Eds., 2008). COST Action 725, The History and current status of plant phenology in Europe (182 p.). Brussels: COST Office.Google Scholar
  143. Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentrations. Grana, 34, 182–188.Google Scholar
  144. Norris-Hill, J. (1998). A method to forecast the start of the Betula, Platanus and Quercus pollen seasons in North London. Aerobiology, 14, 165–170.Google Scholar
  145. Ocana-Peinado, F., Valderrama, M. J., & Aguilera, A. M. (2008). A dynamic regression model for air pollen concentration. Stochastic Environmental Research and Risk Assessment, 22, 59–63.Google Scholar
  146. Ong, E. K., Taylor, P. E., & Knox, R. B. (1997). Forecasting the onset of the grass pollen season in Melbourne (Australia). Aerobiologia, 13, 43–48.Google Scholar
  147. Orlandi, F., Garcia-Mozo, H., Vazquez Ezquerra, L., Romano, B., Dominguez, E., Galán, C., & Fornaciari, M. (2004). Phenological olive chilling requirements in Umbria (Italy) and Andalusia (Spain). Plant Biosystems, 138(2), 111–116.Google Scholar
  148. Orlandi, F., Vazquez, L. M., Ruga, L., Bonofiglio, T., Fornaciari, M., Garcia-Mozo, H., Dominguez, E., Romano, B., & Galán, C. (2005). Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucía, Spain, and Sicily, Italy). Annals of Agricultural and Environmental Medicine, 12, 47–52.Google Scholar
  149. Orlandi, F., Lanari, D., Romano, B., & Fornaciari, M. (2006). New model to predict the timing of olive (Olea europaea) flowering: A case study in central Italy. New Zealand Journal of Crop and Horticultural Science, 34, 93–99.Google Scholar
  150. Pallant, J. (2001). SPSS Survival Manual. Buckingham: Open University Press.Google Scholar
  151. Pasken, R., & Pietrowicz, J. A. (2005). Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmospheric Environment, 39, 7689–7701.Google Scholar
  152. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes: The art of scientific computing. New York: Cambridge University Press. 963 p.Google Scholar
  153. Puppi, G., & Zanotti, A. L. (1989). Methods in phenological mapping. Aerobiologia, 5, 44–54.Google Scholar
  154. Puppi, G., & Zanotti, A. L. (1992). Estimate and mapping of the activity of airborne pollen sources. Aerobiologia, 8(1), 69–74.Google Scholar
  155. Rantio-Lehtimaki, A., Viander, M., & Koivikko, A. (1994). Airborne birch antigens in different particle sizes. Clinical and Experimental Allergy, 24, 23–28.Google Scholar
  156. Ranzi, A., Lauriola, P., Marletto, V., & Zinoni, F. (2003). Forecasting airborne pollen concentrations: Development of local models. Aerobiologia, 19, 39–45.Google Scholar
  157. Reaumur, R. A. F. de. (1735). Observations du thermomètre, faites a Paris pendant l´année 1735, comparée avec celles qui ont été faites sous la ligne, a lísle de France, a Alger et quelque unes de nos isles de l´Amérique. Memoire de l´Académie des Sciences de Paris.Google Scholar
  158. Ribeiro, H., Cunha, M., & Abreu, I. (2006). Comparison of classical models for evaluating the heat requirements of olive (Olea europeae L.) in Portugal. Journal of Integrative Plant Biology, 48(6), 664–671. doi: 10.1111/j.1744-7909.2006.00269.x.Google Scholar
  159. Rodriguez Rajo, F. J., Dopazo, A., & Jato, V. (2004). Environmental factors affecting the start of the pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Annals of Agricultural and Environmental Medicine, 11, 35–44.Google Scholar
  160. Rodriguez Rajo, F. J., Medez, J., & Jato, V. (2005). Factors affecting pollination ecology of Quercus anemophilous species in north-west Spain. Botanical Journal of the Linnean Society, 149, 283–297.Google Scholar
  161. Rodriguez-Rajo, F. J., Valencia-Barrera, R. M., Vega-Maray, A. M., Suarez, F. J., Fernandez-Gonzalez, D., & Jato, V. (2006). Prediction of airborne Alnus pollen concentration by using ARIMA models. Annals of Agricultural and Environmental Medicine, 13, 25–32.Google Scholar
  162. Rogers, C. (2006). Knowledge gaps and hot topics in aerobiology. Paper presented at the 8th International Congress in Aerobiology, Neuchatel Switzerland.Google Scholar
  163. Ronneberger, O. (2007). 3D invariants for automated pollen recognition. Thesis. Freiburg im Breisgau: University of Freiburg.Google Scholar
  164. Ronneberger, O., Schultz, E., & Burkhardt, H. (2002). Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia, 18, 107–115.Google Scholar
  165. Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., & Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, adaptation and vulnerability (Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 79–131). Cambridge: Cambridge University Press.Google Scholar
  166. Rötzer, Th, & Chmielewski, F.-M. (2001). Phenological maps of Europe. Climate Research, 18, 249–257.Google Scholar
  167. Sánchez-Mesa, J. A., Galán, C., Martínez-Heras, J. A., & Hervás-Martínez, C. (2002). The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: The southern part of the Iberian Peninsula. Clinical and Experimental Allergy, 32, 1606–1612.Google Scholar
  168. Sánchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.Google Scholar
  169. Schaber, J., & Badeck, F.-W. (2003). Physiology-based phenology models for forest tree species in Germany. International Journal for Biometeorology, 47, 193–201.Google Scholar
  170. Scheifinger, H., Menzel, A., Koch, E., Peter, Ch, & Ahas, R. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. International Journal of Climatology, 22, 1739–1755.Google Scholar
  171. Schueler, S., Schlunzen, K. H., & Scholz, F. (2005). Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow. Trees, 19, 154–161.Google Scholar
  172. Schwartz, M. D. (Ed.). (2003). Phenology: An integrative environmental science. Dordrecht/Boston/London: Kluwer Academic Publishers. 564 pp.Google Scholar
  173. Siljamo, P., Sofiev, M., Ranta, H., Linkosalo, T., Kubin, E., Ahas, R., Genikhovich, E., Jatczak, K., Jato, V., Nekovar, J., Minin, A., Severova, E., & Shalaboda, V. (2008). Representativeness of point-wise phenological Betula data collected in different parts of Europe. Global Ecology and Biogeography, 17(4), 489–502.Google Scholar
  174. SKC (2010). Button Aerosol Sampler. Accessed 5 October/2010.
  175. Slini, T., Kaprara, A., Karatzas, K., & Moussiopoulos, N. (2006). PM10 forecasting for Thessaloniki, Greece. Environmental Modelling & Software, 21, 559–565.Google Scholar
  176. Smith, M., & Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35, 1400–1406.Google Scholar
  177. Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50, 233–242.Google Scholar
  178. Sodeau, J., O’Connor, D., Hellebust, S., & Healy, D. (2010). Real-time spectrocopic measurments of PBAP in field and laboratory envirnments. Paper presented at the 9th International Congress on Aerobiology, Buenos Aires.Google Scholar
  179. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.Google Scholar
  180. Spieksma, F. T., & Nikkels, A. H. (1998). Airborne grass pollen in Leiden, The Netherlands: Annual variations and trends in quantities and season starts over 26 years. Aerobiologia, 14, 347–358.Google Scholar
  181. Spieksma, F. T., & Nikkels, A. H. (1999). Similarity in seasonal appearance between atmospheric birch-pollen grains and allergen in paucimicronic, size-fractionated ambient aerosol. Allergy, 54(3), 235–241.Google Scholar
  182. Spieksma, F. T., Kramps, J. A., Van der Linden, A. C., Nikkels, B. H., Plomp, A., Koerten, H. K., & Dijkman, J. H. (1990). Evidence of grass-pollen allergenic activity in the smaller micronic atmosphere aerosol fraction. Clinical and Experimental Allergy, 20, 273–280.Google Scholar
  183. Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 232–332.Google Scholar
  184. Stark, P. C., Ryan, L. M., McDonald, J. L., & Burge, H. A. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13, 177–184.Google Scholar
  185. Stephen, E., Raftery, A. E., & Dowding, P. (1990). Forecasting spore concentrations – a time-series approach. International Journal of Biometeorology, 34, 87–89.Google Scholar
  186. Sterling, M., Rogers, C., & Levetin, E. (1999). An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia, 15, 9–18.Google Scholar
  187. Stöckli, R., & Vidale, P. L. (2004). European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter data set. International Journal of Remote Sensing, 25, 3303–3330.Google Scholar
  188. Stöckli, R., Rutishauser, T., Dragoni, D., O’Keefe, J., Thornton, P. E., Jolly, M., Lu, L., & Denning, A. S. (2008). Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research, 113, G04021. doi: 10.1029/2008JG000781.Google Scholar
  189. Stokstad, E. (2002). A little pollen goes a long way. Science, 296, 2314.Google Scholar
  190. Suzuki, M., Tonouchi, M., & Murayama, K. (2008). Automatic measurements of Japanese cedar/cypress pollen concentration and the numerical forecasting at Tokyo metropolitan area.(Paper presented at the International Congress of Biometeorology, September 2008.Google Scholar
  191. Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. New York: Harper Collins.Google Scholar
  192. Tedeschini, E., Rodriguez-Rajo, F. J., Caramiello, R., Jato, V., & Frenguelli, G. (2006). The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana, 45, 222–229.Google Scholar
  193. Thibaudon, M., & Lachasse, C. (2005). Phénologie: Intérêt et méthodes en aérobiologie – Interest of phenology in relation to aerobiology. Revue française d’allergologie et d’immunologie clinique, 45, 194–199.Google Scholar
  194. Tormo, R., Munoz, A., & Silva, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore traps. Aerobiologia, 12, 161–166.Google Scholar
  195. Toro, F. J., Recio, M., Trigo, M. M., & Cabezudo, B. (1998). Predictive models in aerobiology: Data transformation. Aerobiologia, 14, 179–184.Google Scholar
  196. Torrigiani Malaspina, T., Cecchi, L., Morabito, M., Onorari, M., Domeneghetti, M. P., & Orlandini, S. (2007). Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence. Trees, 21(5), 507–514.Google Scholar
  197. Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D., Pak, E. W., Mahoney, R., Vermote, E., & El Saleous, N. (2005). An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–5598.Google Scholar
  198. Tzima, F., Karatzas, K., Mitkas, P., & Karathanasis, S. (2007). Using data-mining techniques for PM10 forecasting in the metropolitan area of Thessaloniki, Greece, IEEE International Conference on Neural Networks – Conference Proceedings, art. no. 4371394 (pp. 2752–2757). Proceedings of the 20th International Joint Conference on Neural Networks ( Organized by the IEEE Computational Intelligence Society and by the International Neural Network Society, Orlando, Florida, August 2007).
  199. van Vliet, A. J. H., Overeem, A., de Groot, R. S., Jacobs, A. F. G., & Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in The Netherlands. International Journal of Climatology, 22, 1757–1767.Google Scholar
  200. Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.Google Scholar
  201. Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modelling methods in Thessaloniki, Greece. Atmospheric Environment, 44, 5101–5111. doi: 10.1016/j.atmosenv.2010.09.006.Google Scholar
  202. Voukantsis, D., Karatzas, D., Jaeger, S., & Berger, U. (2011). Personalized information services for quality of life: The case of airborne pollen induced symptoms. 12th International Conference, EANN 2011, and 7th IFIP WG 12.5 International Conference, AIAI 2011, Corfu, Greece, 15–18 September 2011. Proceedings, Part I (L. S. Iliadis, & C. Jayne (Eds.)) (pp. 509–515), ISBN 978-3-642-23956-4. New York: Springer.Google Scholar
  203. Walker, D. A., Epstein, H. E., Jia, G. J., Balser, A., Copass, C., Edwards, E. J., Gould, W. A., Hollingsworth, J., Knudson, J., Maier, H. A., Moody, A., & Raynolds, M. K. (2003). Phytomass, LAI, and NDVI in northern Alaska: Relationship to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research, 108, 8169.Google Scholar
  204. Ward, S. (2008). The earth observation handbook – Climate change special edition 2008 (esa sP-1315). ESA Communication Production Office, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands, 278 p.Google Scholar
  205. White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11(2), 217–234.Google Scholar
  206. Winkler, H., Ostrowski, R., & Wilhelm, M. (2001). Pollenbestimmungsbuch der Stiftung Deutscher Polleninformationsdienst. Takt Verlag: Paderborn.Google Scholar
  207. Zhang, Z., Zhe, J., Chandra, S., & Hu, J. (2005). An electronic pollen detection method using Coulter counting principle. Atmospheric Environment, 39, 5446–5453.Google Scholar
  208. Ziello, C., Böck, A., Jochner, S., Estrella, N., Buters, J., Weichenmeier, I, Behrendt, H., & Menzel, A. (2010). Bio-monitoring of the Zugspitze area: Linking phenological, meteorological and palynological data along an altitudinal gradient. Paper presented at Erste Wissenschaftliche Tagung Umweltforschungsstation Schneefernerhaus, Iffeldorf, Mai 2010.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Zentralanstalt für Meteorologie und GeodynamikWienAustria
  2. 2.CREAFUniversidad Autónoma de BarcelonaBellaterraSpain
  3. 3.ZAUM - Center of Allergy & Environmenta joint institute of the Technische Universität München and Helmholtz Zentrum MünchenMunichGermany
  4. 4.Science Faculty, Biology DepartmentUludag University, GörükleBursaTurkey
  5. 5.Department of Ecology, School of BiologyAristotle UniversityThessalonikiGreece
  6. 6.Association Française d’Etude des Ambroisies: A F E D ASaint-PriestFrance
  7. 7.Departamento de Biologia Vegetal, Campus de RabanalesUniversidad de CordobaCordobaSpain
  8. 8.Bio- and Environmental Meteorology, Climate DivisionMeteoSchweizZürichSwitzerland
  9. 9.Laboratory of Aeropalynology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
  10. 10.Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
  11. 11.NORUT ITEKTromsøNorway
  12. 12.HNO Klinik der Medizinischen Universität WienWienAustria
  13. 13.Informatics Applications and Systems Group, Faculty of EngineeringAristotle UniversityThessalonikiGreece
  14. 14.National Pollen and Aerobiology Research Unit, Institute of HealthUniversity of WorcesterWorcesterUK
  15. 15.Laboratory for Palynology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  16. 16.Réseau National de Surveillance AérobilogiqueSaint Genis L’ArgentièreFrance
  17. 17.Department of PulmonologyLeiden University Medical CentreLeidenThe Netherlands

Personalised recommendations