Understanding Cancer Progression Using Protein Interaction Networks



Cancer is produced by perturbations affecting several genes and pathways. Environmental stimuli trigger uncontrolled cell growth and invasion into other tissues. Understanding cancer progression requires a profound knowledge of the pathways involved in the communication between proteins and genes at a systems level. Consequently, protein-protein interaction networks play an important role in delineating cancer related pathways. Our understanding of cancer has evolved towards the co-operation of groups of genes that constitute pathways. In this chapter, we describe the characteristics of genes involved in cancer and the relationships between them in the context of the protein-protein interaction network. We also explain several methods to predict novel candidates that are potentially involved in cancer and its progression using topological information encoded in the protein-protein interaction network. Towards developing effective network-based therapeutics, we give details of identifying dysregulation patterns in cancer using protein-protein interaction networks with an emphasis on the underlying mechanisms of progression in metastatic breast cancer.


Protein-protein interaction Network biology Network medicine Active subnetwork Metastasis Metastatic breast cancer Guilt-by-association 



Protein-protein interaction


Gene Ontology


Online Mendelian Inheritance in Man


Receiver-operating characteristic


Area under (ROC) curve


Glucose regulated proteins



EG is supported through FI fellowship granted by “Departament d’Educació i Universitats de la Generalitat de Catalunya i del Fons Social Europeu”. BO acknowledges grants from the Spanish Ministry of Science and Innovation (MICINN), FEDER BIO2011-22568, and PSE-0100000-2009. AS and RS acknowledge MetaBre consortium (LSHC-CT-2004-506049).


  1. Aerts S, Lambrechts D, Maity S et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544PubMedCrossRefGoogle Scholar
  2. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203PubMedCrossRefGoogle Scholar
  3. Alexeyenko A, Sonnhammer EL (2009) Global networks of functional coupling in eukaryotes from comprehensive data integration. Genome Res 19:1107–1116PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alfarano C, Andrade CE, Anthony K et al (2005) The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Res 33:D418–D424PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461PubMedCrossRefGoogle Scholar
  6. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37:D793–D796PubMedPubMedCentralCrossRefGoogle Scholar
  7. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aragues R, Sander C, Oliva B (2008) Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 9:172PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bairoch A, Apweiler R, Wu CH et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:D154–D159PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 4:e1000065PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113PubMedCrossRefGoogle Scholar
  13. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barrett T, Edgar R (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411:352–369PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berglund L, Bjorling E, Oksvold P et al (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7:2019–2027PubMedCrossRefGoogle Scholar
  16. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28L:235–242CrossRefGoogle Scholar
  17. Bhalla US (2003) Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 81:45–65PubMedCrossRefGoogle Scholar
  18. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387PubMedCrossRefGoogle Scholar
  19. Bonifaci N, Berenguer A, Diez J et al (2008) Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes. BMC Med Genomics 1:62PubMedPubMedCentralCrossRefGoogle Scholar
  20. Buetow KH, Klausner RD, Fine H et al (2002) Cancer molecular analysis project: weaving a rich cancer research tapestry. Cancer Cell 1:315–318PubMedCrossRefGoogle Scholar
  21. Chen J, Aronow BJ, Jegga AG (2009) Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10:73PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen L, Xuan J, Riggins RB et al (2011) Identifying cancer biomarkers by network-constrained support vector machines. BMC Syst Biol 5:161PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chowdhury SA, Nibbe RK, Chance MR, Koyuturk M (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18:263–281PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chu LH, Chen BS (2008) Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug target. BMC Syst Biol 2:56PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chuang HY, Lee E, Liu YT et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chuang HY, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744PubMedPubMedCentralCrossRefGoogle Scholar
  27. Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 296:50–57PubMedCrossRefGoogle Scholar
  28. Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377PubMedGoogle Scholar
  29. Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697PubMedPubMedCentralCrossRefGoogle Scholar
  30. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182PubMedCrossRefGoogle Scholar
  31. Dezso Z, Nikolsky Y, Nikolskaya T et al (2009) Identifying disease-specific genes based on their topological significance in protein networks. BMC Syst Biol 3:36PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dickson D (1999) Wellcome funds cancer database. Nature 401:729PubMedCrossRefGoogle Scholar
  33. Dreze M, Monachello D, Lurin C et al (2010) High-quality binary interactome mapping. Methods Enzymol 470:281–315PubMedCrossRefGoogle Scholar
  34. Dutkowski J, Ideker T (2011) Protein networks as logic functions in development and cancer. PLoS Comput Biol 7:e1002180PubMedPubMedCentralCrossRefGoogle Scholar
  35. Efroni S, Schaefer CF, Buetow KH (2007) Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2:e425PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ergun A, Lawrence CA, Kohanski MA et al (2007) A network biology approach to prostate cancer. Mol Syst Biol 3:82PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781PubMedCrossRefGoogle Scholar
  38. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRefGoogle Scholar
  39. Fliri AF, Loging WT, Volkmann RA (2010) Cause-effect relationships in medicine: a protein network perspective. Trends Pharmacol Sci 31:547–555PubMedCrossRefGoogle Scholar
  40. Fry DC, Vassilev LT (2005) Targeting protein-protein interactions for cancer therapy. J Mol Med (Berl) 83:955–963CrossRefGoogle Scholar
  41. Furney SJ, Higgins DG, Ouzounis CA, Lopez-Bigas N (2006) Structural and functional properties of genes involved in human cancer. BMC Genomics 7:3PubMedPubMedCentralCrossRefGoogle Scholar
  42. Furney SJ, Calvo B, Larranaga P et al (2008) Prioritization of candidate cancer genes–an aid to oncogenomic studies. Nucleic Acids Res 36:e115PubMedPubMedCentralCrossRefGoogle Scholar
  43. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183PubMedPubMedCentralCrossRefGoogle Scholar
  44. Garcia-Garcia J, Guney E, Aragues R et al (2010) Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics 11:56PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gluck S (2007) The prevention and management of distant metastases in women with breast cancer. Cancer Invest 25:6–13PubMedCrossRefGoogle Scholar
  46. Goh KI, Cusick ME, Valle D et al (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690PubMedPubMedCentralCrossRefGoogle Scholar
  47. Grimaldi D, Claessens YE, Mira JP, Chiche JD (2009) Beyond clinical phenotype: the biologic integratome. Crit Care Med 37:S38–S49PubMedCrossRefGoogle Scholar
  48. Guldener U, Munsterkotter M, Oesterheld M et al (2006) MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res 34:436–441CrossRefGoogle Scholar
  49. Gundem G, Perez-Llamas C, Jene-Sanz A et al (2010) IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 7:92–93PubMedCrossRefGoogle Scholar
  50. Guney E, Oliva B (2011) Toward PWAS: discovering pathways associated with human disorders. BMC Bioinformatics 12:A12PubMedCentralCrossRefGoogle Scholar
  51. Guo Z, Wang L, Li Y et al (2007) Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction subnetwork. Bioinformatics 23:2121–2128PubMedCrossRefGoogle Scholar
  52. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefGoogle Scholar
  53. Hamosh A, Scott AF, Amberger JS et al (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517PubMedPubMedCentralCrossRefGoogle Scholar
  54. Han K, Park B, Kim H et al (2004) HPID: the Human Protein Interaction Database. Bioinformatics 20:2466–2470PubMedCrossRefGoogle Scholar
  55. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  56. Harris MA, Clark J, Ireland A et al (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261PubMedCrossRefGoogle Scholar
  57. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690PubMedCrossRefGoogle Scholar
  58. Hortobagyi GN (2000) Developments in chemotherapy of breast cancer. Cancer 88:3073–3079PubMedCrossRefGoogle Scholar
  59. Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464:993–998PubMedCrossRefGoogle Scholar
  60. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240PubMedCrossRefGoogle Scholar
  62. Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics 22:2291–2297PubMedPubMedCentralCrossRefGoogle Scholar
  63. Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7:198–210PubMedCrossRefGoogle Scholar
  64. Justman QA, Serber Z, Ferrell JE Jr et al (2009) Tuning the activation threshold of a kinase network by nested feedback loops. Science 324:509–512PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kaal EC, Niel CG, Vecht CJ (2005) Therapeutic management of brain metastasis. Lancet Neurol 4:289–298PubMedCrossRefGoogle Scholar
  66. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  68. Kapushesky M, Emam I, Holloway E et al (2010) Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res 38:D690–D698PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846PubMedPubMedCentralCrossRefGoogle Scholar
  71. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772PubMedPubMedCentralCrossRefGoogle Scholar
  72. Korcsmaros T, Kovacs IA, Szalay MS, Csermely P (2007) Molecular chaperones: the modular evolution of cellular networks. J Biosci 32:441–446PubMedCrossRefGoogle Scholar
  73. Lage K, Karlberg EO, Storling ZM et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316PubMedCrossRefGoogle Scholar
  74. Lapointe J, Li C, Higgins JP et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101:811–816PubMedPubMedCentralCrossRefGoogle Scholar
  75. Laubenbacher R, Hower V, Jarrah A et al (2009) A systems biology view of cancer. Biochim Biophys Acta 1796:129–139PubMedPubMedCentralGoogle Scholar
  76. Lee E, Jung H, Radivojac P et al (2009) Analysis of AML genes in dysregulated molecular networks. BMC Bioinformatics 10((Suppl 9)):S2CrossRefGoogle Scholar
  77. Li LC, Zhao H, Shiina H et al (2003) PGDB: a curated and integrated database of genes related to the prostate. Nucleic Acids Res 31:291–293PubMedPubMedCentralCrossRefGoogle Scholar
  78. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lim WK, Lyashenko E, Califano A (2009) Master regulators used as breast cancer metastasis classifier. Pac Symp Biocomput 2009:504–515Google Scholar
  80. Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162PubMedCrossRefGoogle Scholar
  81. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856PubMedCrossRefGoogle Scholar
  82. Luo J, Emanuele MJ, Li D et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ma X, Lee H, Wang L, Sun F (2007) CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data. Bioinformatics 23:215–221PubMedCrossRefGoogle Scholar
  84. Ma’ayan A, Jenkins SL, Neves S et al (2005) Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309:1078–1083PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mani KM, Lefebvre C, Wang K et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169PubMedPubMedCentralCrossRefGoogle Scholar
  86. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martin B, Aragues R, Sanz-Pamplona R et al (2008) Biological pathways contributing to organ-specific phenotype of brain metastatic cells. J Proteome Res 7:908–920PubMedCrossRefGoogle Scholar
  88. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604PubMedPubMedCentralCrossRefGoogle Scholar
  89. Michod D, Widmann C (2007) DNA-damage sensitizers: potential new therapeutical tools to improve chemotherapy. Crit Rev Oncol Hematol 63:160–171PubMedCrossRefGoogle Scholar
  90. Milenkovic T, Memisevic V, Ganesan AK, Przul N (2010) Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J R Soc Interface 7:423–437PubMedPubMedCentralCrossRefGoogle Scholar
  91. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mulder NJ, Apweiler R, Attwood TK et al (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318PubMedPubMedCentralCrossRefGoogle Scholar
  93. Navlakha S, Kingsford C (2010) The power of protein interaction networks for associating genes with diseases. Bioinformatics 26:1057–1063PubMedPubMedCentralCrossRefGoogle Scholar
  94. Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352PubMedCrossRefGoogle Scholar
  95. Nibbe RK, Markowitz S, Myeroff L et al (2009) Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 8:827–845PubMedPubMedCentralCrossRefGoogle Scholar
  96. Nibbe RK, Koyuturk M, Chance MR (2010) An integrative -omics approach to identify functional subnetworks in human colorectal cancer. PLoS Comput Biol 6:e1000639PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nibbe RK, Chowdhury SA, Koyuturk M et al (2011) Protein-protein interaction networks and subnetworks in the biology of disease. Wiley Interdiscip Rev Syst Biol Med 3:357–367PubMedCrossRefGoogle Scholar
  98. Nitsch D, Goncalves JP, Ojeda F et al (2010) Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinformatics 11:460PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ogmen U, Keskin O, Aytuna AS et al (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–W336PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ostlund G, Lindskog M, Sonnhammer EL (2010) Network-based Identification of novel cancer genes. Mol Cell Proteomics 9:648–655PubMedPubMedCentralCrossRefGoogle Scholar
  101. Paget S (1889) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:98–101Google Scholar
  102. Palotai R, Szalay MS, Csermely P (2008) Chaperones as integrators of cellular networks: changes of cellular integrity in stress and diseases. IUBMB Life 60:10–18PubMedCrossRefGoogle Scholar
  103. Parkinson H, Sarkans U, Kolesnikov N et al (2011) ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39:D1002–D1004PubMedPubMedCentralCrossRefGoogle Scholar
  104. Peri S, Navarro JD, Kristiansen TZ et al (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pujana MA, Han JD, Starita LM et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39:1338–1349PubMedCrossRefGoogle Scholar
  106. Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115–123PubMedCrossRefGoogle Scholar
  107. Qiu YQ, Zhang S, Zhang XS, Chen L (2010) Detecting disease associated modules and prioritizing active genes based on high throughput data. BMC Bioinformatics 11:26PubMedPubMedCentralCrossRefGoogle Scholar
  108. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472PubMedCrossRefGoogle Scholar
  109. Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37(Suppl):S31–S37PubMedCrossRefGoogle Scholar
  110. Rhodes DR, Tomlin SA, Varambally S et al (2005) Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 23:951–959PubMedCrossRefGoogle Scholar
  111. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180PubMedPubMedCentralCrossRefGoogle Scholar
  112. Russell RB, Aloy P (2008) Targeting and tinkering with interaction networks. Nat Chem Biol 4:666–673PubMedCrossRefGoogle Scholar
  113. Salwinski L, Miller CS, Smith AJ et al (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sanz-Pamplona R, Aragues R, Stresing V et al (2007) Functional pathways shared by liver and lung metastases: a mitochondrial chaperone machine is up-regulated in soft-tissue breast cancer metastasis. Clin Exp Metastasis 24:673–683PubMedCrossRefGoogle Scholar
  115. Sanz-Pamplona R, Aragues R, Driouch K et al (2011) Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2+ and ErbB-2- primary breast tumors. Am J Pathol 179:564–579PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sawyers CL (2008) The cancer biomarker problem. Nature 452:548–552PubMedCrossRefGoogle Scholar
  117. Schaefer CF (2004) Pathway databases. Ann N Y Acad Sci 1020:77–91PubMedCrossRefGoogle Scholar
  118. Schlabach MR, Luo J, Solimini NL et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624PubMedPubMedCentralCrossRefGoogle Scholar
  119. Scholl C, Frohling S, Dunn IF et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137:821–834PubMedCrossRefGoogle Scholar
  120. Schwartz AS, Yu J, Gardenour KR et al (2009) Cost-effective strategies for completing the interactome. Nat Methods 6:55–61PubMedPubMedCentralCrossRefGoogle Scholar
  121. Schwikowski B, Uetz P, Fields S (2000) A network of protein-protein interactions in yeast. Nat Biotechnol 18:1257–1261PubMedCrossRefGoogle Scholar
  122. Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098PubMedCrossRefGoogle Scholar
  123. Shedden K, Taylo JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stark C, Breitkreutz BJ, Chatr-Aryamontri A et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704PubMedPubMedCentralCrossRefGoogle Scholar
  125. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904PubMedCrossRefGoogle Scholar
  126. Strausberg RL, Simpson AJ, Wooster R (2003) Sequence-based cancer genomics: progress, lessons and opportunities. Nat Rev Genet 4:409–418PubMedCrossRefGoogle Scholar
  127. Su AI, Wiltshire T, Batalov S et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067PubMedPubMedCentralCrossRefGoogle Scholar
  128. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550PubMedPubMedCentralCrossRefGoogle Scholar
  129. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204PubMedCrossRefGoogle Scholar
  130. The-Uniprot-Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219PubMedCentralCrossRefGoogle Scholar
  131. Tomlins SA, Mehra R, Rhodes DR et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39:41–51PubMedCrossRefGoogle Scholar
  132. Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25:1158–1164PubMedCrossRefGoogle Scholar
  134. Ulitsky I, Shlomi T, Kupiec M, Shamir R (2008) From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol Syst Biol 4:209PubMedPubMedCentralCrossRefGoogle Scholar
  135. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292PubMedPubMedCentralCrossRefGoogle Scholar
  136. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  137. Vanunu O, Magger O, Ruppin E et al (2010) Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol 6:e1000641PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vazquez A (2009) Optimal drug combinations and minimal hitting sets. BMC Syst Biol 3:81PubMedPubMedCentralCrossRefGoogle Scholar
  139. Venkatesan K, Rual JF, Vazquez A et al (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90PubMedPubMedCentralCrossRefGoogle Scholar
  140. Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human disease. Cell 144:986–998PubMedPubMedCentralCrossRefGoogle Scholar
  141. Vogelstein B, Kinzle KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799PubMedCrossRefGoogle Scholar
  142. von Mering C, Huynen M, Jaeggi D et al (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261CrossRefGoogle Scholar
  143. Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208PubMedPubMedCentralCrossRefGoogle Scholar
  144. Waltregny D, Bellahcene A, de Leval X et al (2000) Increased expression of bone sialoprotein in bone metastases compared with visceral metastases in human breast and prostate cancers. J Bone Miner Res 15:34–843Google Scholar
  145. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedCrossRefGoogle Scholar
  146. Weigelt B, Mackay A, A’Hern R et al (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–349PubMedCrossRefGoogle Scholar
  147. Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284:92–96PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113PubMedCrossRefGoogle Scholar
  149. Wu X, Jiang R, Zhang MQ, LI S (2008) Network-based global inference of human disease genes. Mol Syst Biol 4:189PubMedPubMedCentralCrossRefGoogle Scholar
  150. Yang K, Bai H, Ouyang Q et al (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 4:228PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Structural Bioinformatics Group (GRIB-IMIM)Universitat Pompeu Fabra, PRBBBarcelonaSpain
  2. 2.Unit of Biomarkers and Susceptibility, ICO-IDIBELLHospital Duran i ReynalsBarcelonaSpain
  3. 3.Centre d’Oncologia Molecular, Institut de Recerca Oncològica – IDIBELLHospital Duran i ReynalsBarcelonaSpain

Personalised recommendations