Stem Cell Culture: Optimizing Amidst the Complexity

Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 8)

Abstract

Stem cell cultures are presently necessary to investigate the cellular and molecular mechanisms of stem cell biology, to perform pharmacology and toxicology screenings and to provide the material required for regenerative therapies. Hence, optimizing stem cell culture conditions is currently a major challenge in stem cell research. Stem cell culture conditions will never capture the extraordinary complexity of the stem cell niche. Stem cell culture must be viewed as a tool for which the living cell is the material. However, we must also keep in mind that cell culture converts stem cells themselves into tools for basic research or regenerative therapies. Therefore, optimal stem cell culture conditions must be defined according to the endpoint of the culture. Instructing stem cells not necessarily by mimicking the stem cell niche biology but by using artificial, well-controlled and reproducible devices is a realistic aim for the cell culturist. This in turn requires well-defined experimental conditions and real-time probing of the cultured cell environment. Suspension culture in controllable bioreactors is the method of choice for stem cell cultures intended for a final clinical or industrial use whereas microfluidic systems are better designed for dissecting the molecular mechanisms founding stemness. Not only the cell culture medium but also the chemistry, the physical properties and the topography of cell culture substrates are able to modulate stem cell self-renewal and to control stem cell fate. Hence, the design of surface-engineered substrates is the subject of intense and fruitful research. Finally, not only preserving the self-renewal and differentiation potential of stem cells in culture but also preserving their genetic integrity is mandatory.

Keywords

Stem Cell Microfluidic Chip Microfluidic System Stem Cell Niche Glucose Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579PubMedCrossRefGoogle Scholar
  2. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329(5997):1345–1348PubMedCentralPubMedCrossRefGoogle Scholar
  3. Csete M (2005) Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049:1–8PubMedCrossRefGoogle Scholar
  4. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003PubMedCrossRefGoogle Scholar
  5. Ding S, Wu TYH, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA 100(13):7632–7637PubMedCrossRefGoogle Scholar
  6. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677PubMedCentralPubMedCrossRefGoogle Scholar
  7. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of Yap/Taz in mechanotransduction. Nature 474(7350):179–183PubMedCrossRefGoogle Scholar
  8. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedCrossRefGoogle Scholar
  9. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505PubMedCrossRefGoogle Scholar
  10. Lam RHW, Kim M-C, Thorsen T (2009) Culturing aerobic and anaerobic bacteria and mammalian cells with a microfluidic differential oxygenator. Anal Chem 81(14):5918–5924PubMedCentralPubMedCrossRefGoogle Scholar
  11. Lecault V, VanInsberghe M, Sekulovic S, Knapp DJFP, Wohrer S, Bowden W, McLaughlin T, Jarandehei A, Miller MM, Taghipour F, Falconnet D, White AK, Kent DG, Coply MR, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in perfusion microfluidic cell culture arrays. Nat Methods 8(7):581–586PubMedCrossRefGoogle Scholar
  12. Lee JN, Jiang X, Ryan D, Whitesides GM (2004) Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20(26):11684–11691PubMedCrossRefGoogle Scholar
  13. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O(2) regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013PubMedCentralPubMedCrossRefGoogle Scholar
  14. Meier RJ, Schreml S, Wang XD, Landthaler M, Babilas P, Wolfbeis OS (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int 50(46):10893–10896CrossRefGoogle Scholar
  15. Nakamura M, Namiki M, Okuyama A, Matsui T, Doi Y, Takeyama M, Fujioka H, Nishimune Y, Matsumoto K, Sonoda T (1987) Temperature sensitivity of human spermatogonia and spermatocytes in vitro. Arch Androl 19(2):127–132PubMedCrossRefGoogle Scholar
  16. Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Jin S (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106(7):2130–2135PubMedCrossRefGoogle Scholar
  17. Oppegard SC, Nam K-H, Carr JR, Skaalure SC, Eddington DT (2009) Modulating temporal and spatial oxygenation over adherent cellular cultures. PLoS One 4(9)Google Scholar
  18. Petrakis NL (1952) Temperature of human bone marrow. J Appl Physiol 4(7):549–553PubMedGoogle Scholar
  19. Polk BJ, Stelzenmuller A, Mijares G, MacCrehan W, Gaitan M (2006) Ag/Agcl microelectrodes with improved stability for microfluidics. Sens Actuator B 114(1):239–247CrossRefGoogle Scholar
  20. Pompe T, Salchert K, Alberti K, Zandstra P, Werner C (2010) Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protoc 5(6):1042–1050PubMedCrossRefGoogle Scholar
  21. Prowse ABJ, Chong F, Gray PP, Munro TP (2011) Stem cell integrins: implications for ex-vivo culture and cellular therapies. Stem Cell Res 6(1):1–12PubMedCrossRefGoogle Scholar
  22. Przybyla LM, Voldman J (2012) Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proc Natl Acad Sci USA 109(3):835–840PubMedCrossRefGoogle Scholar
  23. Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ, Murphy WL, Schuler LA, Alarid ET, Beebe DJ (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9(15):2132–2139PubMedCentralPubMedCrossRefGoogle Scholar
  24. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615PubMedCrossRefGoogle Scholar
  25. Rodrigues NP, Sakai Y, Fujii T (2008) Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens Actuator B 132(2):608–613CrossRefGoogle Scholar
  26. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296PubMedCentralPubMedCrossRefGoogle Scholar
  27. Steiner M-S, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839PubMedCrossRefGoogle Scholar
  28. Ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A, Eroglu E, Siu RK, Nusse R (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13(9):1070–1075PubMedCrossRefGoogle Scholar
  29. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584PubMedCrossRefGoogle Scholar
  30. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa SI, Muguruma K, Sasai Y (2007) A rock inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686PubMedCrossRefGoogle Scholar
  31. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12):2388–2403PubMedCrossRefGoogle Scholar
  32. Wion D, Christen T, Barbier EL, Coles JA (2009) Po(2) matters in stem cell culture. Cell Stem Cell 5(3):242–243PubMedCrossRefGoogle Scholar
  33. Wu C-C, Luk H-N, Lin Y-TT, Yuan C-Y (2010) A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells. Talanta 81(1–2):228–234PubMedCrossRefGoogle Scholar
  34. Xu Y, Shi Y, Ding S (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453(7193):338–344PubMedCrossRefGoogle Scholar
  35. Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, Ding S (2006) Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 103(18):6907–6912PubMedCrossRefGoogle Scholar
  36. Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.INSERM U836, Grenoble Institut des NeurosciencesUniversité Joseph FourierGrenobleFrance

Personalised recommendations